Tìm tất cả các số nguyên n sao cho : 4n3+n+3 chia hết 2n2+n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\\ A=\left(x-2y\right)^2+10\left(x-2y\right)+5+\left(y-1\right)^2+2\\ A=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2y-5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
\(b,\Leftrightarrow3x^3+10x^2-5+n=\left(3x+1\right)\cdot a\left(x\right)\)
Thay \(x=-\dfrac{1}{3}\Leftrightarrow3\left(-\dfrac{1}{27}\right)+10\cdot\dfrac{1}{9}-5+n=0\)
\(\Leftrightarrow-\dfrac{1}{9}+\dfrac{10}{9}-5+n=0\\ \Leftrightarrow-4+n=0\Leftrightarrow n=4\)
\(c,\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\\ \Leftrightarrow2n\left(n-2\right)+5\left(n-2\right)+3⋮n-2\\ \Leftrightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow n\in\left\{-1;1;3;5\right\}\)
a) ta có: n+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=> n-3 thuộc Ư(5)={1;5;-1;-5}
=> n thuộc {4;8;2;-2}
b) Ta có: 6n+1 chia hết cho 3n-1
=>(6n-2)+2+1 chia hết cho 3n-1
=>2(3n-1) +3 chia hết cho 3n-1
Mà 2(3n-1) chia hết cho 3n-1
=> 3 chia hết cho 3n-1
=> 3n-1 thuộc Ư(3)={1;3;-1;-3}
=> 3n thuộc {2;4;0;-2}
=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}
Mà n thuộc Z
=>n=0
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
\(A:B=\left(2n^2-4n+3n-6+3\right):\left(n-2\right)\\ =\left[2n\left(n-2\right)+3\left(n-2\right)+3\right]:\left(n-2\right)=2n+3\left(\text{dư }3\right)\)
Để phép chia hết \(\Rightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)
theo đề ta có:
\(\dfrac{A}{B}=\dfrac{2n^2-n-3}{n-2}=\dfrac{2n^2-4n+3n-6+3}{n-2}\)
=\(\dfrac{2n\left(n-2\right)+3\left(n-2\right)+3}{n-2}\)
=\(\dfrac{\left(n-2\right)\left(2n+6\right)}{n-2}=\dfrac{2n+6}{1}=2n+6\)
Vậy đa thức A chia hết cho đa thức B
\(\frac{n-1}{n-3}=\frac{n-3+2}{n-3}=1+\frac{2}{n-3}\)
Để thoả mãn đề bài thì n-3=USC(2)={-2;-1;1;2} => n={1;2;4;5}
Là thế này nè:
Ta có: n - 1 chia hết cho n - 3
Ta còn có n - 1 = n - 3 + 2
Suy ra n - 3 + 2 chia hết cho n - 3
Viết dưới dạng phân số: \(\frac{n-3+2}{n-3}=\frac{n-3}{n-3}+\frac{2}{n-3}=1+\frac{2}{n-3}\)
Mà \(\frac{2}{n-3}\)là một số nguyên nên 2 chia hết cho n -3
Suy ra n - 3 \(\in\)Ư (2)
Ư (2) = { 1; 2; -1; -2 }
n - 3 = 1 => n = 4
n - 3 = 2 => n = 5
n - 3 = -1 => n = 2
n - 3 = -2 => n = 1
Vậy n \(\in\){ 4; 5; 2; 1}
\(n^2+3⋮n+5\)
=>\(n^2+5n-5n-25+28⋮n+5\)
=>\(28⋮n+5\)
=>\(n+5\in\left\{1;-1;2;-2;4;-4;7;-7;14;-14;28;-28\right\}\)
=>\(n\in\left\{-4;-6;-3;-7;-1;-9;2;-12;9;-19;23;-33\right\}\)
3/ => a(b-2) thuộc Ư(3) = {1;3;-1;-3}
Mà a > 0
=> a thuộc {1;3}
Ta có bảng kết quả:
a | 1 | 3 |
---|---|---|
b-2 | 3 | 1 |
b | 5 | 3 |
3n + 1 chia hết cho n - 2
⇒ 3n - 6 + 7 chia hết cho n - 2
⇒ 3(n - 2) + 7 chia hết cho n - 2
⇒ 7 chia hết cho n - 2
⇒ n - 2 ∈ Ư(7) = {1; -1; 7; -7}
⇒ n ∈ {3; 1; 9; -5}