số nào dưới đây là nghiệm của phương trình x2 + 20 = -9x nhưng ko là nghiệm của phương trình x2 + 4x - 5 = 0
A. 1 B. -4 C. 2 D.-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x^2+12=8x`
`<=>x^2-8x+12=0`
`<=>(x-2)(x-6)=0`
`<=>` $\left[ \begin{array}{l}x=2\\x=6\end{array} \right.$
`x^2-10x+12=0`
`<=>(x-5)^2-13=0`
`<=>` $\left[ \begin{array}{l}x=-\sqrt{13}+5\\x=\sqrt{13}+5\end{array} \right.$
Vậy không cso đáp án do đề sai
Số nào dưới đây là nghiệm chung của hai phương trình \(x^2+12=8x\) và \(x^2-10x+12=0\) ?
Giải thích:
\(\left(1\right)x^2+12=8x\Leftrightarrow x^2-8x+12=0\)
\(\left(2\right)x^2-10x+12=0\)
Nghiệm của phương trình (1) là: \(\left\{{}\begin{matrix}x_1=6\\x_2=2\end{matrix}\right.\)
Nghiệm của phương trình (2) là: \(\left\{{}\begin{matrix}x_1=5+\sqrt{13}\\x_2=5-\sqrt{13}\end{matrix}\right.\)
\(\Rightarrow\) Không có nghiệm chung.
a) Đây không phải là phương trình đường tròn do có \(xy\).
b) Vì \({a^2} + {b^2} - c = {1^2} + {2^2} - 5 = 0\)nên phương trình đã cho không là phương trình tròn.
c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {4^2} - 1 = 24 > 0\)nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;4} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} = 2\sqrt 6 \).
a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)
\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)
Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)
\(\Leftrightarrow-8m>-28\)
hay \(m< \dfrac{7}{2}\)
Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2
nên Áp dụng hệ thức Viet, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)
Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì
\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau
Gọi x 1 , x 2 là nghiệm của phương trình x 2 - 2 m x + 1 = 0 . Khi đó x 1 + x 2 = 2 m x 1 . x 2 = 1
Gọi
x
3
,
x
4
là nghiệm của phương trình
x
2
-
2
m
x
+
1
=
0
. Khi đó
x
3
+
x
4
=
2
x
3
.
x
4
=
m
Ta có: x 1 = 1 x 3 x 2 = 1 x 4 ⇒ x 1 + x 2 = 1 x 3 + 1 x 4 x 1 . x 2 = 1 x 3 . x 4
⇒ x 1 + x 2 = x 3 + x 4 x 3 . x 4 x 1 . x 2 = 1 x 3 . x 4 ⇔ 2 m = 2 m 1 = 1 m ⇔ m = 1
Đáp án cần chọn là: C
Pt (1) mình chỉ biết thay số thôi, thông cảm!!
*) PT x2 + 20 = -9x (1)
Thay x = 1 vào pt (1) ta được:
12 + 20 = -9 . 1 \(\Leftrightarrow\) 21 = -9 (KTM)
Thay x = -4 vào pt (1) ta được:
(-4)2 + 20 = (-9)(-4) \(\Leftrightarrow\) 36 = 36 (TM)
Thay x = 2 vào pt (1) ta được:
22 + 20 = (-9) . 2 \(\Leftrightarrow\) 24 = -18 (KTM)
Thay x = -5 vào pt (1) ta được:
(-5)2 + 20 = (-9)(-5) \(\Leftrightarrow\) 45 = 45 (TM)
Vậy pt (1) có nghiệm S = {-4; -5}
*) PT x2 + 4x - 5 = 0 (2)
\(\Leftrightarrow\) x2 + 5x - x - 5 = 0
\(\Leftrightarrow\) x(x - 1) + 5(x - 1) = 0
\(\Leftrightarrow\) (x - 1)(x + 5) = 0
\(\Leftrightarrow\) x - 1 = 0 hoặc x + 5 = 0
\(\Leftrightarrow\) x = 1 và x = -5
Vậy pt (2) có nghiệm S = {1; -5}
Vậy B là đáp án đúng
Chúc bn học tốt!!
phương trình (1) mk chỉ bt thay số thôi, thông cảm :)