K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

Hình tự vẽ nhavui

a) Xét TG ABC và TG AMC có:

AB = AC (gt)

BM = CM (gt)

AM cạnh chung

Do đó TG AMB = TG AMC ( c-c-c)

b)suy ra góc AMB = AMC (2 góc t/ứ)

mà 2 góc này ở vị trí kề bù

suy ra AM⊥BC

Ta có: AM⊥BC (cmt)

AM⊥a (gt)

suy ra a//BC

tick nhavui

2 tháng 4 2020

a) Xét ΔAMB và ΔAMC , có:

AM là cạnh chung

AB = AC ( gt )

MB = MC ( M là trung điểm của BC )

=> ΔAMB = ΔAMC ( c-c-c )

b) Có: ΔAMB = ΔAMC ( câu a)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

Mà 2 góc này lại là 2 góc kề bù

=> \(\widehat{AMB}=\widehat{AMC}=180^0:2=90^0\)

=> AM ⊥ BC

Có: \(\left\{{}\begin{matrix}\text{a ⊥ AM}\\BC⊥AM\end{matrix}\right.\)

=> a // BC

c) Có: a ⊥ AM (GT)

Mà: AM // CN (GT)

=> a ⊥ CN

Hay: AN ⊥ CN

Ta có: AM // CN (GT)

=> \(\widehat{MAC}=\widehat{NAC}\) (2 góc so le trong)

Xét 2 tam giác vuông ΔAMC và ΔCNA ta có:

Cạnh huyền AC: chung

\(\widehat{MAC}=\widehat{NAC}\) (cmt)

=> ΔAMC = ΔCNA (c.h - g.n)

24 tháng 12 2021

a: Xét ΔAMB và ΔAMC có

AB=AC

AM chung

MB=MC

Do đó: ΔAMB=ΔAMC

a) Xét ∆AMB và ∆AMC có : 

BM =  MC ( M là trung điểm BC )

AM chung 

AB = AC 

=> ∆AMB = ∆AMC (c.c.c)

b) Vì AB = AC 

=> ∆ABC cân tại A 

Mà AM là trung tuyến 

=> AM \(\perp\)BC 

Mà a\(\perp\)AM 

=> a//BC ( từ vuông góc tới song song )

c) Vì CN//AM (gt)

AN//MC ( a//BC , M thuộc BC)

=> ANCM là hình bình hành 

=> NC = AM , AN = MC

Mà AMC = 90° 

=> ANCM là hình chữ nhật 

=> NAM = AMC = MCN =  CNA = 90° 

Xét ∆ vuông NAC và ∆ vuông MCA có : 

AN = MC

AM = CN

=> ∆NAC = ∆MCA (ch-cgv)

d) Vì ANCM là hình chữ nhật (cmt)

=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)

13 tháng 12 2020

a)

Sửa đề: Chứng minh ΔABM=ΔACM

Xét ΔABM và ΔACM có 

AB=AC(gt)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

Ta có: AB=AC(gt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

b) Xét ΔABM vuông tại M và ΔDCM vuông tại M có 

MB=MC(M là trung điểm của BC)

AM=DM(gt)

Do đó: ΔABM=ΔDCM(hai cạnh góc vuông)

\(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)

a) Xét ΔABE và ΔMBE có:

BE chung

AB = MB (gt)

AE = EM (E là trung điểm của AM)

Suy ra ΔABE = ΔMBE (ccc)

b) Xét Δ ABK và Δ MBK có:

AB = BM (gt)

góc ABK =  góc MBK (ΔABE = ΔMBE)

BK chung

Suy ra ΔABK = ΔMBK (cgc)

Suy ra góc BAK = góc BMK

Mà góc BAK = 90 độ ( ΔABC vuông tại A)

Suy ra góc BMK = 90 độ

Suy ra KM ⊥ BC (đng)

a: Xét ΔABE và ΔMBE co

BA=BM

EA=EM

BE chung

=>ΔABE=ΔMBE

b: Xet ΔBAK và ΔBMK có

BA=BM

góc ABK=góc MBK

BK chung

=>ΔBAK=ΔBMK

=>góc BMK=90 độ

=>KM vuông góc BC

c: Xét tứ giác MFKQ có

MF//KQ

MF=KQ

=>MFKQ là hình bình hành

=>MQ//KF

=>góc CMQ=góc CBK=góc ABK

10 tháng 8 2018

A B C M N I a b

a.Tam giác ABC có AB=AC vậy tâm giác ABC là tam giác cân

Vậy xét tam giác AMB và AMC có AB=AC (gt)

                                                  góc B=góc C ( tam giác cân)

                                                  BM=CM (gt)

Vậy tam giác AMB=tam giác AMC (c.g.c)

b.

Vì tam giác AMB= tam giác AMC nên góc AMC= góc AMB mà AMB + AMC = 180 ( kề bù)

Vậy suy ra AMB=AMC=90 độ vậy AM vuông góc BC

Ta có AM vuông góc BC

        AM vuông góc a

Vậy BC//a

c.

Ta có  góc NAC=góc ACM( AN//MC)

          AC chung

         góc NCA= góc MAC ( AM// NC)

Vậy tam giác AMC= tam giác CNA (g.c.g)

a: Xét ΔAMB và ΔAMC có

AB=AC

AM chung

MB=MC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nen AM là đường cao

=>a//BC