K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2015

ta co tam giac AHB vuong tai H(gt)=>goc ABH + goc BAH=90 độ(1)

tam giac BAC vuong tại A (gt)=>goc BAH +goc CAH=90độ(2)

tu 1 va 2=>goc ABH=gocCAH(3)

tam giac AON co ON=OA(cung ban kinh)=>tam giac AON can=>goc OAN= goc ONA

hay goc CAH = goc ONA(4)

TU 3 VA 4=>goc ONA=goc ABH hay goc ANH=MBC

ma goc ANM+CNM=900=>goc MBC+goc MNC=1800=>DPCM

Xét (M) có

ΔAHB nội tiếp

AB là đường kính

Do đó: ΔAHB vuông tại H

=>\(\widehat{AHB}=90^0\)

Xét (N) có

ΔAHC nội tiếp

AC là đường kính

Do đó: ΔAHC vuông tại H

=>\(\widehat{AHC}=90^0\)

\(\widehat{AHB}+\widehat{AHC}=90^0+90^0=180^0\)

=>B,H,C thẳng hàng

=>AH\(\perp\)BC

Xét ΔNAM và ΔNHM có

NA=NH

AM=HM

NM chung

Do đó: ΔNAM=ΔNHM

=>\(\widehat{NAM}=\widehat{NHM}=90^0\)

Xét tứ giác AMHN có

\(\widehat{MAN}+\widehat{MHN}=90^0+90^0=180^0\)

=>AMHN là tứ giác nội tiếp

a:

góc BDC=góc BEC=1/2*sđ cung BC=90 độ

=>CD vuông góc AB và BE vuông góc AC

Xét ΔABC có

CD,BE là đường cao

CD cắt BE tại H

=>H là trực tâm

=>AH vuông góc BC

b: góc AEH+góc ADH=180 độ

=>AEHD nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

c: góc BDC=góc BEC=90 độ

=>BDEC nội tiếp đường tròn đường kính BC

=>O là trung điểm của BC

d: ID=IE

OD=OE

=>OI là trung trực của DE

=>OI vuông góc DE

DD
24 tháng 5 2022

a) Ta có: \(\widehat{AMO}=\widehat{ADO}=\widehat{ANO}=90^o\) nên \(M,N,D\) cùng nhìn \(AO\) dưới một góc vuông suy ra \(M,D,O,N,A\) cùng thuộc một đường tròn. 

b) Gọi \(F\) là giao điểm của \(AC\) và đường tròn \(\left(O\right)\).

\(\Delta ANF\sim\Delta ACN\left(g.g\right)\) suy ra \(AN^2=AC.AF\).

Xét tam giác \(AHN\) và tam giác \(AND\):

\(\widehat{HAN}=\widehat{NAD}\) (góc chung) 

\(\widehat{ANH}=\widehat{ADN}\) (vì \(AMDON\) nội tiếp, \(\widehat{ANH},\widehat{ADN}\) chắn hai cung \(\stackrel\frown{AM},\stackrel\frown{AN}\) mà \(AM=AN\))

\(\Rightarrow\Delta AHN\sim\Delta AND\left(g.g\right)\)

suy ra \(AN^2=AH.AD\)

suy ra \(AC.AF=AH.AD\)

\(\Rightarrow\Delta AFH\sim\Delta ADC\left(c.g.c\right)\Rightarrow\widehat{AFH}=\widehat{ADC}=90^o\)

suy ra \(\widehat{HFC}=90^o\) mà \(\widehat{BFC}=90^o\) (do \(F\) thuộc đường tròn \(\left(O\right)\))

suy ra \(B,H,F\) thẳng hàng do đó \(BH\) vuông góc với \(AC\).

Tam giác \(ABC\) có hai đường cao \(AD,BF\) cắt nhau tại \(H\) suy ra \(H\) là trực tâm tam giác \(ABC\)

23 tháng 5 2022

Bạn check lại và đánh lại đề để mình có thể giúp đỡ nha.

5 tháng 9 2023

giúp mik với các bạn

a: Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

=>CF vuông góc AB

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE vuông góc AC

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm

=>AH vuông góc BC tại D

b: Xét tứ giác AFHE có

góc AFH+góc AEH=90+90=180 độ

=>AFHE nội tiếp đường tròn đường kính AH

I là trung điẻm của AH

c:

Xét tứ giác BFHD có

góc BFH+góc BDH=180 độ

=>BFHD nội tiếp

=>góc DFH=góc DBH=góc EBC

góc IFD=góc IFH+góc DFH

=góc IHF+góc EBC

=góc DHC+góc EBC

=90 độ-góc FCB+góc EBC

=90 độ

=>IF là tiếp tuyến của (O)

Xét ΔIFD và ΔIED có

IF=IE

FD=ED

ID chung

=>ΔIFD=ΔIED

=>góc IED=góc IFD=90 độ

=>IE là tiếp tuyến của (O)

24 tháng 1 2023

ít tra mạng xong tham khảo đi ạ

nếu bạn làm được thì bạn hãy làm đi , tra mạng , và tham khảo ít thôi nhé

a: ΔBAD cân tại B

mà BH là đường cao

nên BH là phân giác của góc ABD

XétΔCAB và ΔCDB có

BA=BD

\(\widehat{ABC}=\widehat{DBC}\)

BC chung

Do đó: ΔCAB=ΔCDB

=>\(\widehat{CAB}=\widehat{CDB}=90^0\)

=>CD là tiếp tuyến của (B;BA)

b: I đối xứng B qua AH

=>AH là đường trung trực của BI

=>AH\(\perp\)BI tại trung điểm của BI

mà AH\(\perp\)BC

và BC,BI có điểm chung là B

nên B,I,C thẳng hàng

AH\(\perp\)BI tại trung điểm của BI

=>AH\(\perp\)BC tại trung điểm của BI

mà AH\(\perp\)BC tại H

nên H là trung điểm của BI

ΔBAD cân tại B

mà BH là đường cao

nên H là trung điểm của AD

Xét tứ giác ABDI có

H là trung điểm chung của AD và BI

nên ABDI là hình bình hành

Hình bình hành ABDI có BA=BD

nên ABDI là hình thoi

=>ID//AB

mà AB\(\perp\)AC

nên ID\(\perp\)AC

Xét ΔCAD có

CH,DI là đường cao

CH cắt DI tại I

Do đó: I là trực tâm của ΔCAD

=>AI\(\perp\)CD tại E

Gọi K là trung điểm của AC
=>K là tâm của đường tròn đường kính AC

Xét tứ giác AHEC có \(\widehat{AHC}=\widehat{AEC}=90^0\)

nên AHEC là tứ giác nội tiếp đường tròn đường kính AC

=>A,H,E,C cùng thuộc đường tròn tâm K, đường kính AC

Xét (K) có

AC là đường kính

AB\(\perp\)AC tại A

Do đó: AB là tiếp tuyến của (K)

20 tháng 2 2019

Giúp mình câu b,c,d nhanh nhé! Mai mình nộp. Cmon mấy bạn

2 tháng 6 2020

câu này dễ bạn tự làm thư đi