Tìm a ∈ ℤ sao cho:
a + 1 là ước số của 5a + 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a-8\inƯ\left(13\right)\)
\(=>a-8\in\left\{\pm1;\pm13\right\}\)
\(\left(+\right)a-8=1=>a=1+8=9\)
\(\left(+\right)a-8=-1=>a=-1+8=7\)
\(\left(+\right)a-8=13=>a=13+8=21\)
\(\left(+\right)a-8=-13=>a=-13+8=-5\)
Vậy \(a\in\left\{9;7;21;-5\right\}\)
Vì a-8 là ước của 13. Nên: a-8 € {1;-1;13;-13}
=> a € {9;7;21;-5}
Ta có: a - 6 là ước số của 5a - 49
=> 5a - 49 chia hết cho a - 6
Mà 5a - 30 chia hết cho a - 6
=> 19 chia hết cho a - 6
=> a - 6 = { -19 ; -1 ; 1 ; 19 }
=> a = { -13 ; 5 ; 7 ; 25 }
bạn ấn vào đúng 0 sẽ ra kết quả mình giải rồi dễ lắm
trả lời.......................
ok...............................
đúng nhé......................
a+6 là ước số của 4a+9
\(\Rightarrow4a+9⋮a+6\)
\(\Rightarrow4\left(a+6\right)-15⋮a+6\)
\(\Rightarrow15⋮a+6\)
Tới đây bí