K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

=5ab^2 ( a^2 - 2 b + 1/2 ab^3 )

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Lời giải:

$\frac{5}{2}ab^2(2a^2-4b+3ab^3)=\frac{5}{2}ab^2.2a^2-\frac{5}{2}ab^2.4b+\frac{5}{2}ab^2.3ab^3$

$=5a^3b^2-10ab^3+\frac{15}{2}a^2b^5$

17 tháng 6 2020

\(M=\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2a}-\sqrt{3b}\right)+\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)-2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\left(đkxđ:a,b\ge0;mau\ne0\right)\)[tự tìm cái sau :)) ]

\(VP=\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2}.\sqrt{a}-\sqrt{3}.\sqrt{b}\right)}{a\sqrt{2}+\sqrt{3ab}}+\frac{\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)}{a\sqrt{2}+\sqrt{3ab}}-\frac{2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)

\(=\frac{2a+2a\sqrt{2}-2\sqrt{3ab}}{a\sqrt{2}+\sqrt{3ab}}+\frac{2\sqrt{3ab}-3b}{a\sqrt{2}+\sqrt{3ab}}-\frac{2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)

\(=\frac{2a+2a\sqrt{2}-3b+2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)

mình làm được đến đây , bạn làm được tiếp thì làm =))

17 tháng 6 2020

M=\(M=6\sqrt{B\hept{\begin{cases}\\\end{cases}}3,6}\)

9 tháng 2 2021

ĐKXĐ : \(\hept{\begin{cases}ab-2\ne0\\ab+2\ne0\\a^4b^4\ne0\end{cases}}\Rightarrow ab\ne\pm2;a\ne0;b\ne0\)

\(P=\left(\frac{1}{ab-2}+\frac{1}{ab+2}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\left(\frac{2ab}{a^2b^2-4}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\left(\frac{4a^3b^3}{a^4b^4-16}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\frac{8a^5b^5}{a^8b^8-16^2}.\frac{a^4b^4+16}{a^4b^4}=\frac{8a^5b^5\left(a^4b^4+16\right)}{\left(a^4b^4-16\right)\left(a^4b^4+16\right).a^4b^4}\)

\(=\frac{8ab}{a^4b^4-16}\)

b) Khi \(\frac{a^2+4}{b^2+9}=\frac{a^2}{9}\)

=> (a2 + 4).9 = a2(b2 + 9)

=> 9a2 + 36 = a2b2 + 9a2

=> a2b2 = 36

=> (ab)2 = 36

=> \(\orbr{\begin{cases}ab=6\left(tm\right)\\ab=-6\left(tm\right)\end{cases}}\)

Khi ab = 6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.6}{6^4-16}=\frac{48}{1280}=\frac{3}{80}\)

Khi ab = -6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.\left(-6\right)}{\left(-6\right)^4-16}=-\frac{3}{80}\)

2:

\(VT=\dfrac{a^2b}{a-b}\cdot\dfrac{2\sqrt{2}\left(a-b\right)}{5\sqrt{3}\cdot a^2\sqrt{b}}=\dfrac{2}{15}\cdot\sqrt{6b}=VP\)
1: \(=9\sqrt{ab}+\dfrac{7\sqrt{ab}}{b}-\dfrac{5\sqrt{ab}}{a}-3\sqrt{ab}=\)6căn ab+căn ab(7/b-5/a)

=căn ab(6+7/b-5/a)

11 tháng 5 2016

\(I=\frac{a^{\frac{4}{3}}-8a^{\frac{2}{3}}b}{a^{\frac{2}{3}}+2\sqrt[3]{ab}+4b^{\frac{2}{3}}}\left(1-2\sqrt[3]{\frac{b}{a}}\right)^{-1}-a^{\frac{2}{3}}=\frac{a^{\frac{1}{3}}\left(a-8b\right)}{a^{\frac{2}{3}}+2a^{\frac{1}{3}}.b^{\frac{1}{3}}+4b^{\frac{2}{3}}}\left(\frac{\sqrt[3]{a}-2\sqrt[3]{b}}{\sqrt[3]{a}}\right)^{-1}-a^{\frac{2}{3}}\)

  \(=\frac{\sqrt[3]{a}\left[\left(\sqrt[3]{a}\right)^3-\left(2\sqrt[3]{b}\right)^3\right]}{a^{\frac{2}{3}}+2\sqrt[3]{ab}+4b^{\frac{2}{3}}}.\frac{\sqrt[3]{a}}{\sqrt[3]{a}-2\sqrt[3]{b}}-a^{\frac{2}{3}}\)

  \(=\frac{\left(\sqrt[3]{a}\right)^2\left(\sqrt[3]{a}-2\sqrt[3]{b}\right)\left[\left(\sqrt[3]{a}\right)^2+2\sqrt[3]{ab}+\left(2\sqrt[3]{b}\right)^2\right]}{\left(\sqrt[3]{a}-a\sqrt[3]{b}\right)\left[\left(\sqrt[3]{a}\right)^2+2\sqrt[3]{ab}+\left(2\sqrt[3]{b}\right)^2\right]}-a^{\frac{2}{3}}=a^{\frac{2}{3}}-a^{\frac{2}{3}}=0\)

a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)

\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)

\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)

=-a-1

b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)

\(=\left|3a-5\right|-2a+4\)

\(=5-3a-2a+4\)

=9-5a

c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)

\(=4a-3-\left|2a-1\right|\)

\(=4a-3-2a+1\)

\(=2a-2\)

d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)

\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)

\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)

\(=-a^2\)