K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2020

\(M=\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2a}-\sqrt{3b}\right)+\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)-2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\left(đkxđ:a,b\ge0;mau\ne0\right)\)[tự tìm cái sau :)) ]

\(VP=\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2}.\sqrt{a}-\sqrt{3}.\sqrt{b}\right)}{a\sqrt{2}+\sqrt{3ab}}+\frac{\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)}{a\sqrt{2}+\sqrt{3ab}}-\frac{2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)

\(=\frac{2a+2a\sqrt{2}-2\sqrt{3ab}}{a\sqrt{2}+\sqrt{3ab}}+\frac{2\sqrt{3ab}-3b}{a\sqrt{2}+\sqrt{3ab}}-\frac{2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)

\(=\frac{2a+2a\sqrt{2}-3b+2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)

mình làm được đến đây , bạn làm được tiếp thì làm =))

17 tháng 6 2020

M=\(M=6\sqrt{B\hept{\begin{cases}\\\end{cases}}3,6}\)

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

Bài 1:

$14+\sqrt{40}+\sqrt{56}+\sqrt{140}=14+\sqrt{56}+(\sqrt{40}+\sqrt{140})$

=14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}=(12+2\sqrt{35})+2+(2\sqrt{10}+2\sqrt{14})$

$=(\sqrt{5}+\sqrt{7})^2+2+2\sqrt{2}(\sqrt{5}+\sqrt{7})$

$=(\sqrt{5}+\sqrt{7}+\sqrt{2})^2$

$\Rightarrow \sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}=\sqrt{2}+\sqrt{5}+\sqrt{7}$

\(\Rightarrow A=\frac{\sqrt{2}+\sqrt{5}+\sqrt{7}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}=1\)

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

Lời giải:

a) ĐKXĐ: $a,b\geq 0$ và $a,b$ không đồng thời cùng bằng $0$

\(B=\frac{2a+2\sqrt{2}a-2\sqrt{3ab}+2\sqrt{3ab}-3b-2a\sqrt{2}}{a\sqrt{2}+\sqrt{3ab}}=\frac{2a-3b}{\sqrt{a}(\sqrt{2a}+\sqrt{3b})}=\frac{(\sqrt{2a}-\sqrt{3b})(\sqrt{2a}+\sqrt{3b})}{\sqrt{a}(\sqrt{2a}+\sqrt{3b})}\)

\(=\frac{\sqrt{2a}-\sqrt{3b}}{\sqrt{a}}=\sqrt{2}-\sqrt{\frac{3b}{a}}\)

b)

\(a=1+3\sqrt{2}; 3b=30+11\sqrt{8}\Rightarrow \frac{3b}{a}=\frac{30+11\sqrt{8}}{1+3\sqrt{2}}=\frac{(30+11\sqrt{8})(1-3\sqrt{2})}{(1+3\sqrt{2})(1-3\sqrt{2})}\)

\(=\frac{102+68\sqrt{2}}{17}=6+4\sqrt{2}=(2+\sqrt{2})^2\)

\(\Rightarrow \sqrt{\frac{3b}{a}}=2+\sqrt{2}\)

\(\Rightarrow B=\sqrt{2}-(2+\sqrt{2})=-2\)

NV
4 tháng 8 2020

Bạn coi lại đề

Cái ngoặc đầu tiên ấy, nhìn rất có vấn đề ở cái \(\sqrt{a}\)\(\sqrt{2a}\)

12 tháng 6 2017

B xem lại đề bài thử nhé

12 tháng 6 2017

bài này mình cũng dò lại đề rồi mình chép đúng đấy mà không làm được nên mới nhờ giải

12 tháng 12 2016

Điều kiện: \(\hept{\begin{cases}a>0\\\sqrt{a}-1\ne0\\\sqrt{a}-2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}a>0\\a\ne1\\a\ne4\end{cases}}\)

Ta có:

\(1P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)\)

\(=\frac{\sqrt{a}-2}{\sqrt{a}}\)

29 tháng 6 2018

không hiểu nhan

29 tháng 6 2019

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(=\frac{\sqrt{a^3}-3a\sqrt{b}+3\sqrt{a}.b-\sqrt{b^3}+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(=\frac{3\sqrt{a^3}-3a\sqrt{b}+3b\sqrt{a}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{\sqrt{a}+\sqrt{b}}=0\)

10 tháng 6 2017

mờ quá bạn