K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2020

undefinedundefinedundefinedundefined

4 tháng 5 2018

SAI ĐỀ RỒI BẠN ƠI!!! 

^^

NV
23 tháng 3 2022

Với đa thức hệ số nguyên, xét 2 số nguyên m, n bất kì, ta có:

\(f\left(m\right)-f\left(n\right)=am^3+bm^2+cm+d-an^3-bn^2-cn-d\)

\(=a\left(m^3-n^3\right)+b\left(m^2-n^2\right)+c\left(m-n\right)\)

\(=a\left(m-n\right)\left(m^2+n^2+mn\right)+b\left(m-n\right)\left(m+n\right)+c\left(m-n\right)\)

\(=\left(m-n\right)\left[a\left(m^2+n^2+mn\right)+b\left(m+n\right)+c\right]⋮\left(m-n\right)\)

\(\Rightarrow f\left(m\right)-f\left(n\right)⋮m-n\) với mọi m, n nguyên

Giả sử tồn tại đồng thời \(f\left(7\right)=53\) và \(f\left(3\right)=35\)

Theo cmt, ta phải có: \(f\left(7\right)-f\left(3\right)⋮7-3\Leftrightarrow53-35⋮4\Rightarrow18⋮4\) (vô lý)

Vậy điều giả sử là sai hay không thể đồng thời tồn tại \(f\left(7\right)=53\) và \(f\left(3\right)=35\)

23 tháng 3 2022

em cảm ơn thầy

28 tháng 4 2021

giúp em với ạ eoeo

28 tháng 4 2021

giúp em với khocroi

4 tháng 5 2018

Ko biết là bạn có cần nữa ko.

Nhưng mình vẫn trả lời cho những bạn khác đang cần.

Do P(0) và P(1) lẻ nên ta có:

P(0)=d=> d là số lẻ

P(1)=a+b+c+d => a+b+c+d là số lẻ

Giả sử y là nghiệm nguyên của P(x). Khi đó:

P(y)=ay^3+by^2+cy+d=0

     =>ay^3+by^2+cy=-d

Mà d là số lẻ

=>y là số lẻ

Lại có: P(y)-P(1)=(ay^3+by^2+cy+d)-(a+b+c+d)

                         =a(y^3-1)+b(y^2-1)+c(y-1)+(d-d)

                         =a(y^3-1)+b(y^2-1)+c(y-1)

Do y là số lẻ=>P(y)-P(1) là số chẵn(1)

Mà P(y)-P(1)= 0-a+b+c+d

                   =-a-b-c-d

Do a+b+c+d lẻ

=>-a-b-c-d lẻ 

Hay P(y)-P(1) là số lẻ(2)

Vì (1) và (2) mâu thuẫn

=> Giả sử sai

Hay f(x) ko thể có nghiệm là các số nguyên(ĐCCM)

4 tháng 5 2018

 Chỗ: mà d là số lẻ bổ sung thêm cho mình: nên -d là số lẻ nha

hihi

17 tháng 8 2019

f(5)=125a+25b+5c+d

f(4)=64a+16b+4c+d

=>f(5)-f(4)=(125a+25b+5c+d)-(64a+16b+4c+d)

=125a+25b+5c+d-64a-16b-4c-d

=61a+9b+c=2019

f(7)=343a+49b+7c+d

f(2)=8a+4b+2c+d

f(7)-f(2)=(343a+49b+7c+d)-(8a+4b+2c+d)

=343a+49b+7c+d-8a-4b-2c-d

=335a+45b+5c

=5(67a+9b+c)

=5(6a+1019) chia hết cho 5

Vậy f(7)-f(2) là hợp số (đpcm)

17 tháng 8 2019

Ta có : \(f\left(5\right)-f\left(4\right)=2019\Leftrightarrow\left(125a+25b+5c+d\right)-\left(64a+16b+4c+d\right)=2019\)

\(\Leftrightarrow61a+9b+c=2019\left(1\right)\)

Lại có : \(f\left(7\right)-f\left(2\right)=\left(345a+49b+7c+d\right)-\left(8a+4b+2c+d\right)\)

\(=335a+45b+5c=305a+45b+5c+30a=5\left(61a+9b+c\right)+30a\)

\(=2012+30a=2\left(1006+15a\right)⋮2\left(2\right)\)

\(\Rightarrowđpcm\)