K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

SAI ĐỀ RỒI BẠN ƠI!!! 

^^

NV
23 tháng 3 2022

Với đa thức hệ số nguyên, xét 2 số nguyên m, n bất kì, ta có:

\(f\left(m\right)-f\left(n\right)=am^3+bm^2+cm+d-an^3-bn^2-cn-d\)

\(=a\left(m^3-n^3\right)+b\left(m^2-n^2\right)+c\left(m-n\right)\)

\(=a\left(m-n\right)\left(m^2+n^2+mn\right)+b\left(m-n\right)\left(m+n\right)+c\left(m-n\right)\)

\(=\left(m-n\right)\left[a\left(m^2+n^2+mn\right)+b\left(m+n\right)+c\right]⋮\left(m-n\right)\)

\(\Rightarrow f\left(m\right)-f\left(n\right)⋮m-n\) với mọi m, n nguyên

Giả sử tồn tại đồng thời \(f\left(7\right)=53\) và \(f\left(3\right)=35\)

Theo cmt, ta phải có: \(f\left(7\right)-f\left(3\right)⋮7-3\Leftrightarrow53-35⋮4\Rightarrow18⋮4\) (vô lý)

Vậy điều giả sử là sai hay không thể đồng thời tồn tại \(f\left(7\right)=53\) và \(f\left(3\right)=35\)

23 tháng 3 2022

em cảm ơn thầy

23 tháng 3 2020

undefinedundefinedundefinedundefined

3 tháng 5 2018

Ta có f(7) = a.7^3+2.b.7^2+3.c.7+4d = 343a +98b+21c+4d

Lại có f(3)= \(a.3^3+2.b.3^2+3.c.3+4.d=27a+18b+9c+4d\\ \) 

Giả sử phản chứng : Nếu f(7) và f(3) đồng thời bằng 73 và 58 thì suy ra : \(f\left(7\right)-f\left(3\right)=\left(343a-27a\right)+\left(98b-18b\right)+\left(21c-9c\right)+\left(4d-4d\right)=73-58=15\)

\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=316a+90b+12c=15\)

Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k

\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=2k=15\)

Mà 15 ko chia hết cho 2 , suy ra giả sử sai

\(\Rightarrow\)\(\left(ĐPCM\right)\)

4 tháng 5 2018

Chỗ "các đơn thức chỉ có dạng chung duy nhất là 2k" ấy mình thấy thay bằng:

Mà \(f\left(7\right)-f\left(3\right)=316a+90b+12c\)

                               \(=2\left(158a+45b+6c\right)⋮2\)

                                 =>ĐCCM

hay hơn.

Dù sao thì cũng cho bạn !!!

4 tháng 5 2018

Ko biết là bạn có cần nữa ko.

Nhưng mình vẫn trả lời cho những bạn khác đang cần.

Do P(0) và P(1) lẻ nên ta có:

P(0)=d=> d là số lẻ

P(1)=a+b+c+d => a+b+c+d là số lẻ

Giả sử y là nghiệm nguyên của P(x). Khi đó:

P(y)=ay^3+by^2+cy+d=0

     =>ay^3+by^2+cy=-d

Mà d là số lẻ

=>y là số lẻ

Lại có: P(y)-P(1)=(ay^3+by^2+cy+d)-(a+b+c+d)

                         =a(y^3-1)+b(y^2-1)+c(y-1)+(d-d)

                         =a(y^3-1)+b(y^2-1)+c(y-1)

Do y là số lẻ=>P(y)-P(1) là số chẵn(1)

Mà P(y)-P(1)= 0-a+b+c+d

                   =-a-b-c-d

Do a+b+c+d lẻ

=>-a-b-c-d lẻ 

Hay P(y)-P(1) là số lẻ(2)

Vì (1) và (2) mâu thuẫn

=> Giả sử sai

Hay f(x) ko thể có nghiệm là các số nguyên(ĐCCM)

4 tháng 5 2018

 Chỗ: mà d là số lẻ bổ sung thêm cho mình: nên -d là số lẻ nha

hihi

26 tháng 4 2021

Do b=3a+c

Ta có:f(1)=a+b+c+d=4a+2c+d

f(-2)=-8a+4b-2c+d=-8a+4.(3a+c)-2c+d=-8a+12a+4c-2c+d=4a+2c+d

=>f(1).f(-2)=(4a+2c+d)2

=>f(1).f(-2) ko âm 

26 tháng 4 2021

Do b=3a+c

ta sẽ có: f(1)=a+b+c+d=4a+2c+d

f(-2)=-8a+4b-2c+d=-8a+4.(3a+c)-2c+d=8a+12a+4c-2c+d=4a+2c+d

=>f(1).f(2)=(4a+2c+d)\(^2\)

=>f(1).f(2) không âm

chúc chị học tốt em mới lớp 6 nhưng có đi học thêm bài này cùng ác anh chị lớp 7 nên giúp chị ạ^^

15 tháng 1 2022

Ta có:

\(f\left(x\right)=ax^3+bx^2+cx+d\\ f\left(x\right)=0x^3+0x^2+0x+0\)

\(\Rightarrow a=b=c=d\left(theo.pp.đa.thức.đồng.nhất\right)\\ Chúc.bạn.học.Toán.tốt.\)

 

15 tháng 1 2022

\(f\left(x\right)=0\) có phải f(0) đâu bạn