K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2015

ai cho mình thêm 1 cái cho tròn 135 với

6 tháng 1 2019

a) Xét \(\Delta MDA\)và \(\Delta CDB\)có:
MD = DC (gt)
DA = DB (gt)
\(\widehat{MDA}=\widehat{BDC}\)(đối đỉnh)
=> \(\Delta MDA=\Delta CDB\left(c.g.c\right)\)

b) Vì \(\Delta MDA=\Delta CDB\left(cma\right)\Rightarrow\widehat{MAD}=\widehat{DBC}\)(2 góc tương ứng)
Mà \(\widehat{MAD}\)so le trong với \(\widehat{DBC}\)
=> AM // BC (đpcm)

c) Xét \(\Delta AEN\)và \(\Delta BEC\)có:
EN = BE (gt)
AE = EC (gt)
\(\widehat{AEN}=\widehat{BEC}\)(đối đỉnh)
\(\Rightarrow\Delta AEN=\Delta CEB\left(c.g.c\right)\)
\(\Rightarrow\widehat{NAE}=\widehat{ECB}\)(2 góc tương ứng)
Mà \(\widehat{NAE}\)so le trong với \(\widehat{ECB}\)
\(\Rightarrow\)AN // BC
Ta có :
AN // BC
MA // BC
\(\Rightarrow AN\equiv MA\)
\(\Rightarrow\)M;A;N  thẳng hàng (đpcm) 

18 tháng 11 2021

\(\left\{{}\begin{matrix}AD=DB\\MD=DC\\\widehat{ADM}=\widehat{BDC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AMD=\Delta BDC\left(c.g.c\right)\\ \Rightarrow\widehat{DAM}=\widehat{ABC}\left(1\right)\\ \left\{{}\begin{matrix}AE=EC\\EN=BE\\\widehat{AEN}=\widehat{BEC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AEN=\Delta CEB\left(c.g.c\right)\\ \Rightarrow\widehat{EAN}=\widehat{ACB}\left(2\right)\)

Xét tam giác ABC: \(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180^0\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{BAC}+\widehat{ADM}+\widehat{AEN}=180^0\\ \Rightarrow\widehat{MAN}=180^0\)

Do đó \(\widehat{MAN}\) là góc bẹt hay M,A,N thẳng hàng

Lại có \(AM=BC\left(\Delta AMD=\Delta BDC\right);AN=BC\left(\Delta AEN=\Delta CEB\right)\)

Vậy AM=AN hay A là trung điểm MN

30 tháng 11 2015

M A N B C K E

Xét \(\Delta AMKvà\Delta BKCcó:\)

KA=KB

góc MKA=góc BKC

KM=KC

\(\Rightarrow\Delta AMK=\Delta BCK\left(c-g-c\right)\)

\(\Rightarrow\)AM=BC                                                  (1)

\(\Rightarrow\)MA//BC (góc M so le trong với góc C)      (3)

Xét \(\Delta AENvà\Delta BECcó:\)

EA=EC

góc AEN=góc BEC

EN=EB

\(\Rightarrow\Delta AEN=\Delta CEB\left(c-g-c\right)\)

\(\Rightarrow\)NA=BC                                                (2)

\(\Rightarrow\)NA//BC (góc N so le trong với góc C)     (4)

Từ (1) và (2) có: M,A,N thẳng hàng 

Từ (3) và (4) có: AM=AN