Cho ab=b^2 và acbc=(ba)^2. Tìm abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo
a) Vì tam giác ABC vuông tại A.
=> AB + AC = BC
Thay số: 6 + 8 =BC
=> BC= 14 cm
b) Vì 8 cm >6cm Mà cạnh AB đối diện với góc ACB, cạnh AC đối diện với góc ABC
=> Góc ABC > góc ACB
Tham khảo
c) Xét 2 tam giác ABD và HBD có:
+ AB = AC (Giả thiết)
+ BD là cạnh chung
+ Góc BAD = góc BHD = 90 độ (GT)
=> Tam giác ABD= t/g HBD(cạnh huyền- cạnh góc vuông)
=> Góc ABD= góc HBD(hai cạnh tương ứng)
=> BD là tia phân giác của ABC
d) Vì Tam giác BHD = t/g BAD => AD = HD (2 cạnh tương ứng)
Xét 2 t/g EDA , CDH có :
+ Góc EDA = góc HDG ( 2 góc đối đỉnh)
+ DA = DH ( cmt )
+ Góc EAD = góc CHD =90 độ (GT)
=> T/g EDA = t/g CDH (g-c-g)
=> ED = CD (2 cạnh tương ứng)
=. T/g EDC cân tại D
a: Xet ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng vơi ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AE*AB; AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
c: \(DB=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(S_{BAC}=\dfrac{1}{2}\cdot4\cdot6=12\left(cm^2\right)\)
Hình tự vẽ
a) ΔΔABH vuông tại H có đường cao HD
=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)
ΔΔAHC vuông tại H có đường cao HE
=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)
Từ (1) và (2) => AD.AB = AE.AC (=AH2)
b) ΔΔAHB vuông tại H có đường cao HD
=> 1HD2=1AH2+1BH21HD2=1AH2+1BH2 (Hệ thức lượng trong tam giác vuông) (3)
ΔΔAHC vuông tại H có đường cao HE
=> 1HE2=1AH2+1HC21HE2=1AH2+1HC2 (Hệ thức lượng trong tam giác vuông) (4)
Từ (3) và (4) => 1HD2+1HE2=1AH2+1HC2+1AH2+1HB2=2AH2+1HC2+1HB21HD2+1HE2=1AH2+1HC2+1AH2+1HB2=2AH2+1HC2+1HB2
c) Kẻ đường cao CM
Xét ΔΔABH và ΔΔCBM có:
ˆAHB=ˆCMB(=90o)AHB^=CMB^(=90o)
Chung ˆABCABC^
=> ΔΔABH ~ ΔΔCBM (g.g)
=> AHAD=BCCMAHAD=BCCM
=> AH.CM = BC.AD (*)
Vì AD.AB = AE.AC (cmt)
=> ADAC=AEABADAC=AEAB
Xét ΔΔADE và ΔΔACB có:
ADAC=AEABADAC=AEAB
Chung ˆBACBAC^
=> ΔΔADE ~ ΔΔACB (c.g.c)
=> DEBC=ADACDEBC=ADAC
=> DE.AC = BC.AD (**)
Từ (*) và (**) => AH.CM = DE.AC
=> DE=AH.CMACDE=AH.CMAC(I)
ΔΔACM vuông tại M => sinA=CMACsinA=CMAC (II)
Từ (I) và (II) => DE = AH.sin A
a, \(BC=BH+HC=10\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}AH=\sqrt{BH\cdot HC}=4,8\left(cm\right)\\AB=\sqrt{BH\cdot BC}=6\left(cm\right)\end{matrix}\right.\)
\(\sin HCA=\dfrac{AB}{BC}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{HCA}\approx37^0\)
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
=>BD=ED
b: Ta có: ΔABD=ΔAED
=>\(\widehat{ABD}=\widehat{AED}\)
=>\(\widehat{ABC}=\widehat{AEK}\)
Xét ΔAEK và ΔABC có
\(\widehat{AEK}=\widehat{ABC}\)
AE=AB
\(\widehat{EAK}\) chung
Do đó: ΔAKE=ΔACB
=>\(\widehat{AKE}=\widehat{ACB}\)
c: Ta có: ΔAKE=ΔACB
=>KE=CB
Ta có: BD+DC=BC
DE+DK=EK
mà BD=DE và BC=EK
nên DC=EK
Xét ΔDBK và ΔDEC có
DB=DE
\(\widehat{BDK}=\widehat{EDC}\)(hai góc đối đỉnh)
DK=DC
Do đó: ΔDBK=ΔDEC
=>BK=EC
Xét ΔBKE và ΔCEB có
BK=EC
BE=CB
BE chung
Do đó: ΔBKE=ΔCEB