Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AC=AD\cdot AB\)
b: Ta có: \(AE\cdot AC=AD\cdot AB\)
nên \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Xét ΔADE và ΔACB có
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
\(\widehat{DAE}\) chung
Do đó: ΔADE\(\sim\)ΔACB
a,DoΔvuông AHC có:
AH2=AE.AC (1)
Δ vuông AHB có:
AH2=AD.AB (2)
Từ (1) và (2) :
AE.AC =AD.AB
b, Xest ΔAED và ΔABC có:
BAC^chung
AE.AC=AD.AB (câu a)
=> tam giác AED đồng dạng với tam giác ABC ( c-g-c)
a) ΔABH vuông tại H có đường cao HD
=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)
ΔAHC vuông tại H có đường cao HE
=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)
Từ (1) và (2) => AD.AB = AE.AC (=AH2)
câu b) bn tự làm nhé
a: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(\left\{{}\begin{matrix}AH^2=AD\cdot AB\\HB^2=BD\cdot AB\end{matrix}\right.\Leftrightarrow\dfrac{AD}{BD}=\dfrac{AH^2}{HB^2}\)
Hình tự vẽ
a) ΔΔABH vuông tại H có đường cao HD
=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)
ΔΔAHC vuông tại H có đường cao HE
=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)
Từ (1) và (2) => AD.AB = AE.AC (=AH2)
b) ΔΔAHB vuông tại H có đường cao HD
=> 1HD2=1AH2+1BH21HD2=1AH2+1BH2 (Hệ thức lượng trong tam giác vuông) (3)
ΔΔAHC vuông tại H có đường cao HE
=> 1HE2=1AH2+1HC21HE2=1AH2+1HC2 (Hệ thức lượng trong tam giác vuông) (4)
Từ (3) và (4) => 1HD2+1HE2=1AH2+1HC2+1AH2+1HB2=2AH2+1HC2+1HB21HD2+1HE2=1AH2+1HC2+1AH2+1HB2=2AH2+1HC2+1HB2
c) Kẻ đường cao CM
Xét ΔΔABH và ΔΔCBM có:
ˆAHB=ˆCMB(=90o)AHB^=CMB^(=90o)
Chung ˆABCABC^
=> ΔΔABH ~ ΔΔCBM (g.g)
=> AHAD=BCCMAHAD=BCCM
=> AH.CM = BC.AD (*)
Vì AD.AB = AE.AC (cmt)
=> ADAC=AEABADAC=AEAB
Xét ΔΔADE và ΔΔACB có:
ADAC=AEABADAC=AEAB
Chung ˆBACBAC^
=> ΔΔADE ~ ΔΔACB (c.g.c)
=> DEBC=ADACDEBC=ADAC
=> DE.AC = BC.AD (**)
Từ (*) và (**) => AH.CM = DE.AC
=> DE=AH.CMACDE=AH.CMAC(I)
ΔΔACM vuông tại M => sinA=CMACsinA=CMAC (II)
Từ (I) và (II) => DE = AH.sin A