K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2018

Đáp án A

Phương trình hoành độ giao điểm của (C) và Ox là  x 4 − m x 2 + m = 0     * .

Đặt t = x 2 ≥ 0  khi đó  * ⇔ f t = t 2 − m t + m = 0

Để (*) có 4 nghiệm phân biệt ⇔ f t = 0 có 2 nghiệm dương phân biệt t 1 , t 2  

Khi đó, gọi t 1 , t 2    t 1 < t 2  là hai nghiệm phân biệt của  f t = 0

Suy ra:

x 1 = − t 2 ; x 2 = − t 1 ; x 3 = t 1 ; x 4 = t 2 ⇒ x 1 4 + x 2 4 + x 3 4 + x 4 4 = 2 t 1 2 + t 2 2 = 30  

Mà t 1 + t 2 = m t 1 t 2 = m  

⇒ t 1 2 + t 2 2 = t 1 + t 2 2 − 2 t 1 t 2 = m 2 − 2 m

suy ra  m > 4 m 2 − 2 m = 15 ⇔ m = 5.

14 tháng 5 2018

Chọn A.

Phương pháp: Tìm m.

3 tháng 2 2017

4 tháng 6 2021

Để pt có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4-4\left(m-1\right)\ge0\)\(\Leftrightarrow2\ge m\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(1\right)\\x_1x_2=m-1\end{matrix}\right.\) 

\(x_1^4-x_1^3=x_2^4-x_2^3\)

\(\Leftrightarrow\left(x_1^4-x_2^4\right)-\left(x_1^3-x_2^3\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2\right)-\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[2\left(x_1^2+x_2^2\right)-x_1^2-x_1x_2-x_2^2\right]=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)=0\)

\(\Leftrightarrow x_1-x_2=0\) (2) ( vì \(x_1^2-x_1x_2+x_2^2>0;\forall x,y\))

Từ (1) (2) \(\Rightarrow x_1=x_2=1\)

\(\Rightarrow x_1x_2=m-1=1\) \(\Leftrightarrow m=2\) (Thỏa)

Vậy...

1 tháng 12 2017

Đáp án A

Phương trình hoành độ giao điểm của (C)và Ox là

17 tháng 9 2018

b) Đặt x 2  = t (t ≥ 0). Khi đó ta có phương trình: t 2  – mt – m – 1 = 0 (*)

Δ =  m 2  - 4(-m - 1) = m 2  + 4m + 4 = m + 2 2

Phương trình đã cho có 4 nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm dương phân biệt

Đề kiểm tra Toán 9 | Đề thi Toán 9

14 tháng 11 2017

Chọn D

1 tháng 6 2017

4 tháng 5 2018

Đáp án A

 

Ghi nhớ: Nếu hàm số

liên tục trên đoạn thì phương trình

có ít nhất một nghiệm nằm trong khoảng .