chứng minh: M=(2013+2013^2+2013^3+.......................2013^10) Chia hết cho 2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:M=(2013+20132)+(20133+20134)+....+(20139+201310)
M=2013(1+2013)+20133(1+2013)+......+20139(1+2013)
M=2013.2014+20133.2014+.....+20139.2014
M=2014(2013+20133+......+20139) chia hết cho 2014
Vậy M chia hết cho 2014
Nếu bạn không hiểu chỗ nào thì nhắn tin hỏi mình nhé!Cho mình xin một tick nha!
Cậu bùi danh nghệ gì đó ơi đây là toán nâng cao chứ ko phải toán lớp 7,8 như cậu nói đâu
1) \(23^{401}+38^{202}-2^{433}=23^{4.100}.23+38^{4.50}.38^2-2^{4.108}.2^1=\left(..1\right).23+\left(..6\right).1444-\left(..6\right).2=\left(..3\right)+\left(..4\right)-\left(..2\right)=\left(..5\right)\)
a)A=20130+20131+20132+...+20132011
2013A=2013+20132+20133+...+20132012
2013A-A=2012A=20132012-20130
A=20132012-1/2012
k tao đi tao làm phần b cho
b này : Chép cái đề bài vào
=>(2013+20131)+(20132+20133)+.....+(20132010+20132011)
=>2013.(1+2013)+20132.(1+2013)+.....+20132010.(1+2013)
=>2013.2014+20132.2014+......+20132010+.2014
=>2014.(2013+20132+.....+20132010) chia hết cho 2014
Vậy A chia hết cho 2014
2007^5 có đuôi là 1 , 2014^4 có đuôi là 6 và 2013^13 có đuôi là 7; 1 + 6 - 7 = 0. Suy ra biểu thức trên \(⋮\) cho 10
ta có: 3^2014=(3^2)^1007=9^1007=......9
1^2012=.....1
=>2013^2014+2011^2012=....9+....1=........0 chia hết 10
vậy 2013^2014+2011^2012 chia hết 10
Ta có : \(2013^{2015}+1^{2015}⋮\left(2013+1\right)=2014\)
\(2015^{2013}-1^{2013}⋮\left(2015-1\right)=2014\)
Do đó : \(\left(2013^{2015}+1^{2015}\right)+\left(2015^{2013}-1^{2013}\right)⋮2014\)
\(\Rightarrow2013^{2015}+1+2015^{2013}-1⋮2014\)
\(\Rightarrow2013^{2015}+2015^{2013}+\left(1-1\right)⋮2014\)
\(\Rightarrow2013^{2015}+2015^{2013}⋮2014\)
Vậy bài toán đã được chứng minh