K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

Ta có : \(\frac{x}{y+z-2}=\frac{y}{x+z-3}=\frac{z}{x+y+5}=x+y+z\)(1)

Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :

\(\frac{x+y+z}{y+z-2+x+z-3+x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)}=x+y+z\)(2)

Nếu \(x+y+z=0\)thì từ (1) => x = 0,y = 0,z = 0

Nếu \(x+y+z\ne0\),thì từ (2) suy ra : \(\frac{1}{2}=x+y+z\),khi đó (1) trở thành:

\(\frac{x}{\frac{1}{2}-x-2}=\frac{y}{\frac{1}{2}-y-3}=\frac{z}{\frac{1}{2}-z+5}=\frac{1}{2}\)

Từ đó suy ra \(x=-\frac{1}{2}\),\(y=-\frac{5}{6}\),z = \(\frac{11}{6}\)

Chỗ khi đó (1 ) sai nha bạn phải là ( 2 ) 

17 tháng 1 2021

Quy y và z đều về x , sau đó thay vào thoi là nhanh mà.

17 tháng 1 2021

Quy về còn lâu và dài dòng hơn ấy ạ ><

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

6 tháng 12 2023

\(x\) + y = 2;  ⇒ y = 2 - \(x\)

y + z  = 3   ⇒ y  = 3 - z 

⇒ 2 - \(x\) = 3 - z ⇒ \(x\) = 2 - 3 + z ⇒ \(x\) = -1 + z

Thay \(x\) = -1 + z vào biểu thức z + \(x\) = -5 ta có:

z  - 1 + z = -5

2z = -5 + 1 ⇒ 2z = -4 ⇒ z = -4: 2 ⇒ z = -2

Thay z = -2 vào biểu thức \(x\) = -1 + z ta có \(x\) = -1 -2 = -3

Thay  z = -2 vào biểu thức y = 3 - z ta có: y  = 3 - (-2) = 5

 

 

11 tháng 2 2018

Tổng của 3 số x , y , z là :

 ( - 5 + 2 + 3 ) : 2 = 0

Vì x + y = 2 => z = 0 - 2 = - 2

Vì y + z = 3 => x = 0 - 3 = - 3

Vì z + x = - 5 => y = 0 - ( - 5 ) = 5

 Vậy ( x , y , z ) = ( - 3 ; 5 ; - 2 }

15 tháng 7 2016

Theo đầu bài ta có:
\(\hept{\begin{cases}x\left(x+y+z\right)=-5\\y\left(x+y+z\right)=9\\z\left(x+y+z\right)=5\end{cases}}\)
\(\Rightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=-5+9+5\)
\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=4+5\)
\(\Rightarrow\left(x+y+z\right)^2=9\)
\(\Rightarrow x+y+z=3\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{5}{x+y+z}=-\frac{5}{3}\\y=\frac{9}{x+y+z}=3\\z=\frac{5}{x+y+z}=\frac{5}{3}\end{cases}}\)