Giải phương trình: x4+x3+2x-4=0
^Giúp mình nhanh-gọn-lẹ với nha^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.x^2-11x+15=-15.\Leftrightarrow x^2-11x+30=0.\)
\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=6.\\x=5.\end{matrix}\right.\)
\(b.2x-3x+10=x.\Leftrightarrow-2x+10=0.\Leftrightarrow x=5.\)
\(c.x^3-4=4.\Leftrightarrow x^3=8.\Leftrightarrow x^3=2^3.\Rightarrow x=2.\)
\(d.x^4+x^3-x^2-x=0.\Leftrightarrow x^2\left(x^2+x\right)-\left(x^2+x\right)=0.\Leftrightarrow\left(x^2-1\right)\left(x^2+x\right)=0.\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)x\left(x+1\right)=0.\Leftrightarrow\left(x-1\right)\left(x+1\right)^2x=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0.\\x+1=0.\\x=0.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-1.\\x=0.\end{matrix}\right.\)
a) Cách 1: Khai triển HĐT rút gọn được 3 x 2 + 6x + 7 = 0
Vì (3( x 2 + 2x + 1) + 4 < 0 với mọi x nên giải được x ∈ ∅
Cách 2. Chuyển vế đưa về ( x + 3 ) 3 = ( x - 1 ) 3 Û x + 3 = x - 1
Từ đó tìm được x ∈ ∅
b) Đặt x 2 = t với t ≥ 0 ta được t 2 + t - 2 = 0
Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)
Từ đó tìm được x = ± 1
c) Biến đổi được
d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x ∈ {0; 2; 4}
Ta thấy x = 1 không phải nghiệm của phương trình nên nhân 2 vế của phương trình với x - 1 ta có:
⇔ x = 1(KTM)
Vậy phương trình đã cho vô nghiệm.
\(\Leftrightarrow x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4=0\)
\(\Leftrightarrow x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+2x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+2\right)=0\)
Vì x^2 + 2 > 0 \(\forall x\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
Vậy ...
\(x^4+x^3+2x-4=0\Leftrightarrow\left(x^4-1\right)+\left(x^3-1\right)+\left(2x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+\left(x-1\right)\left(x^2+x+1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1+x^2+x+1+2\right)=0\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+2x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+2\right)=0\text{ mà }x^2+2>0\text{ nên:}x-1=0\text{ hoặc:}x+2=0\)
x=1 hoặc x=-2