Tìm x,y thỏa mãn
3x+17y=159
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử x, y là các số nguyên thoả mãn (1). Ta thấy 159 và 3x đều chia hết cho 3 nên 17y cũng chia hết cho 3, do đó y chia hết cho 3 ( vì 17 và 3 nguyên tố cùng nhau)
Đặt y = 3t ( t là số nguyên). Thay vào (1), ta được:
3x + 17.3t = 159
x + 17t = 53
=> x =53 - 17t
Do đó \(\hept{\begin{cases}x=53-17t\\y=3t\end{cases}}\left(t\in Z\right)\)
Đảo lại thay các biểu thức của x và y vào (1) được nghiệm đúng.
Vậy (1) có vô số (x; y) nguyên được biểu thị bởi công thức:
\(\hept{\begin{cases}x=53-17t\\y=3t\end{cases}}\left(t\in Z\right)\)
pt<=>17y=159-3x
<=>17y=3(53-x)
=>17y chia hết 3
mà (3,17)=1 =>y=3k (k thuộc Z)
=>x=53-17x
Vậy pt có dạng tổng quát:
x=53-17k;y=3k
Ta có 95 chia hết cho 5 , 5x chia hết cho 5 => 17y chia hết cho 5 mà (17,5)=1 => y chia hết cho 5 mà y là số nguyên tô => y=5
=> 5x=95-17 . 5= 10 => x=2 (/m)
Vậy x=2,y=5
T icik nha
Vì x,y là số nguyên tố nên:\(x,y\in N;x>1\)
Do \(5x⋮5;95⋮5\Rightarrow17y⋮5\)
\(\Rightarrow y⋮5\) vì \(\left(17;5\right)=1\)
Mà y là số nguyên tố nên y=5 suy ra x=2
Vì \(3x,159\) đều chia hết cho 3 nên 17y chia hết cho 3.
Mà 17 là số nguyên tố nên y chia hết cho 3.
Đặt \(y=3t\left(t\in Z\right)\)
Thay vào phương trình,ta có:
\(3x+17\cdot3t=159\)
\(\Rightarrow x+17t=53\)
\(\Rightarrow x=53-17t\)
Do đó:\(\hept{\begin{cases}y=3t\\x=53-17t\end{cases}}\)
Vậy phương trình có vô số nghiệm nguyên được xác định bởi công thức:\(\hept{\begin{cases}y=3t\\x=53-17t\end{cases}}\) với t là số nguyên tùy ý.
3x + 17y = 159
Vì 3x chia hết cho 3; 159 chia hết cho 3
=> 17y chia hết cho 3
Mà (3;17)=1 => y chia hết cho 3
Lại có: 17y < 159 => y <10
=> \(y\in\left\{3;6;9\right\}\)
+ Với y = 3 thì 3x = 159 - 17.3 = 108
=> x = 108 : 3 = 36
+ Với y = 6 thì 3x = 159 - 17.6 = 57
=> x = 57 : 3 = 19
+ Với y = 9 thì 3x = 159 - 17.9 = 6
=> x = 6 : 3 = 2
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (36;3) ; (19;6) ; (2;9)
x=36;y=3
x=19;y=6
x=2;y=9
có tính số âm ko?