K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

a) Vì \(a_1+a_2+......+a_9\ne0\)

\(\Rightarrow\)Ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.........=\frac{a_8}{a_9}=\frac{a_9}{a_1}=\frac{a_1+a_2+......+a_8+a_9}{a_2+a_3+......+a_9+a_1}=1\)

\(\Rightarrow a_1=a_2\)\(a_2=a_3\); ........... ; \(a_8=a_9\)\(a_9=a_1\)

\(\Rightarrow a_1=a_2=a_2=........=a_9\)( đpcm )

26 tháng 1 2019

a, \(-\frac{2}{5}+\frac{5}{3}\left(\frac{3}{2}-\frac{4}{15}x\right)=\frac{7}{6}\)

\(\frac{5}{3}\left(\frac{3}{2}-\frac{4}{15}x\right)=\frac{47}{30}\)

\(\frac{3}{2}-\frac{4}{15}x=\frac{47}{50}\)

\(\frac{4}{15}x=\frac{14}{25}\)

\(x=\frac{21}{10}\)

21 tháng 1 2021

a, \(\left|4x-8\right|\le8\)

\(\Leftrightarrow\left(\left|4x-8\right|\right)^2\le64\)

\(\Leftrightarrow16x^2-64x+64\le64\)

\(\Leftrightarrow16x^2-64x\le0\)

\(\Leftrightarrow16x\left(x-4\right)\le0\)

\(\Leftrightarrow0\le x\le4\)

b, \(\left|x-5\right|\le4\)

\(\Leftrightarrow\left(\left|x-5\right|\right)^2\le16\)

\(\Leftrightarrow x^2-10x+25\le16\)

\(\Leftrightarrow x^2-10x+9\le0\)

\(\Leftrightarrow1\le x\le9\)

\(\Rightarrow x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)

c, \(\left|2x+1\right|< 3x\)

TH1: \(x\ge-\dfrac{1}{2}\)

\(\left|2x+1\right|< 3x\)

\(\Leftrightarrow2x+1< 3x\)

\(\Leftrightarrow x>1\)

\(\Rightarrow\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)

TH2: \(x< -\dfrac{1}{2}\)

\(\left|2x+1\right|< 3x\)

\(\Leftrightarrow-2x-1< 3x\)

\(\Leftrightarrow x>-\dfrac{1}{5}\left(l\right)\)

Vậy \(\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)

21 tháng 1 2021

d, \(\left|x+1\right|+\left|x\right|< 3\)

\(\Leftrightarrow x+1+x+2\left|x^2+x\right|< 9\)

\(\Leftrightarrow\left|x^2+x\right|< 4-x\)

Xét hai trường hợp để phá dấu giá trị tuyệt đối

e, Tương tự câu d

14 tháng 7 2021

khong biet

16 tháng 12 2018

\(\left(2x-1\right)\left(x-5\right)-x^2+10x-25=0\)

\(\left(2x-1\right)\left(x-5\right)-\left(x^2-10x+25\right)=0\)

\(\left(2x-1\right)\left(x-5\right)-\left(x-5\right)^2=0\)

\(\left(x-5\right)\left(2x-1-x+5\right)=0\)

\(\left(x-5\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)

16 tháng 12 2018

\(\left(5n-3\right)^2-9=\left(5n-3\right)^2-3^2=\left(5n-3-3\right)\left(5n-3+3\right)=5n\left(5n-6\right)\)

Ta có: \(5⋮5\)

\(\Rightarrow5n\left(5n-6\right)⋮5\forall n\in Z\)

\(\Rightarrow\left(5n-3\right)^2-9⋮5\forall n\in Z\)

                                  đpcm

11 tháng 11 2016

 đó chính là -4 minh khong muon giai ra ta lau lam ban

11 tháng 11 2016

rút 4 ra ngoài nhan bạn  4(2(x+1/x)^2+(x^2+1/x^2)^2-(x^2+1/x^2)(x+1/x)^2=(x+4)^2 

mik xét cái này cho dễ nhìn nhan 

2(x+1/x)^2-(x^2+1/x^2)(x+1/x)^2

= (x+1/x)^2(2-x^2-1/x^2)

= -(x+1/x)^2(x^2-2+1/x^2)

= -(x+1/x)^2(x-1/x)^2=-(x^2-1/x^2)^2

thế ở trên ta có 

4(-(x^2-1/x^2)^2+(x^2+1/x^2)^2)=(x+4)^2 

4(-x^4+2-1/x^4+x^4+2+1/x^4)=x^2+8x+16

4.4=x^2+8x+16 

suy ra x^2+8x=0 

x(x+8)=0

suy ra x=0 hoặc x=-8 

mak nhìn để bài thì x=0 ko được nên x=-8

20 tháng 1 2017

a) x(x+2) > 0

=> x2 + 2x > 0 

Vì x2 luôn ≥ 0 với mọi x nên để x2 + 2x > 0 thì 2x > 0 => x>0

Vậy với x>0 thì x(x+2) > 0

b) ( x -1 )( x + 3) < 0

<=> x2 + 3x - x - 3 > 0

<=>  x2 + 2x - 3 > 0

Vì x2 luôn ≥ 0 với mọi x nên để x2 + 2x - 3 < 0 thì 2x - 3 < 0 => 2x < 3 => x < 3/2

Vậy với x<3/2 thì ( x -1 )( x + 3) < 0

c) ( 1 - x )(  y + 1 ) =-3

Ta có bảng: 

1 - x  

1

-1

3

-3

  y + 1

3

-3

1

-1

x

0

2

-2

4

y

2

-4

0

-2

Vậy với x thuộc {…} và y thuộc {…} thì ( 1 - x )(  y + 1 ) =-3

Làm mẫu câu a nha 

a) \(x\left(x+2\right)>0\)

Th1 : \(\hept{\begin{cases}x>0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>-2\end{cases}\Rightarrow}x>0}\)

Th2 : \(\hept{\begin{cases}x< 0\\x+2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x< -2\end{cases}}\Rightarrow x< -2}\)

Vậy ta có : \(\orbr{\begin{cases}x>0\\x< -2\end{cases}}\)

7 tháng 8 2015

a) \(\left(x-\frac{2}{5}\right).\left(x+\frac{3}{7}\right)0\)                                     \(x+\frac{3}{7}-\frac{3}{7}\)                                          \(x

27 tháng 7 2017

Bài 3:

a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)

Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN

Mà \(\left|2x-\frac{1}{5}\right|\ge0\)

Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi

\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)

b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)

Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)

Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN

mà \(x+\frac{1}{2}\ge0\)

Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)

Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)

và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)

Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2

Phần b này thì mình không chắc lắm bạn tự xem lại nhé

27 tháng 7 2017

Bài 1: 

\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))

=> 11 - x = 1

=> x = 10

Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)