Tìm số nguyên n để phân số\(\frac{32n+4}{36n+9}\)là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt d=UC(32n+4,36n+9)
=> \(\hept{\begin{cases}32n+4⋮d\\36n+9⋮d\end{cases}\Rightarrow}8\left(36n+9\right)-9\left(32n+4\right)⋮d\Leftrightarrow36⋮d\)
=> d=1,2,3,6,12,18,36
Ta thấy: 36n+9 không chia hết cho 2 => d=1,3
Để phân số tối giản d\(\ne\)3
mà 36n+9 chia hết cho 3
=> 32n+4 không chia hết cho 3 hay 2n+1 không chia hết cho 3
=> \(\orbr{\begin{cases}2n+1=3k+1\\2n+1=3k+2\end{cases}\Leftrightarrow}\orbr{\begin{cases}n=\frac{3k}{2},k_{ }chẵn\\n=\frac{3k+1}{2},k_{ }lẻ\end{cases}}\)
Vậy với n=... thì phân số tối giản
Giả sử phân số \(\frac{32n+4}{36n+9}\) chưa tối giản
\(\Leftrightarrow32n+4;36n+9\) có ước chung là số nguyên tố
Gọi \(d=ƯCLN\left(32n+4;36n+9\right)\)
\(\Leftrightarrow\hept{\begin{cases}32n+4⋮d\\36n+9⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8n+1⋮d\\4n+1⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8n+1⋮d\\8n+2⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
Vậy phân số trên tối giản vs mọi n
Gọi d là ƯCLN của (36n+4,8n+1)
Khi đó :36n+4 chia hết cho d
8n + 1 chia hết cho d
Xét hiệu 2.(36n + 4) - 9.(8n + 1) chia hết cho d
= 72n+ 8 - 72 n - 9 chia hết cho d
= 8 - 9 chia hết cho d
= -1 chia hết cho d
=> đcpcm
gọi d là ước chung của(36n+4; 8n+1)
36n+4 chia hết cho d suy ra 2(36n+4)chia hết cho d
8n+1 chia hết cho d suy ra 9(8n+1)chia hết cho d
⇔(72n+8)- (72n+9)⋮d
⇔72n+8-72n+9⋮d
⇔8-9⋮d
⇔d=1
Vậy đcpcm
1. a) Để phân số có giá trị nguyên thì n + 9 phải chia hết cho n - 6
Ta có: n + 9 chia hết cho n - 6
=> n - 6 + 15 chia hết cho n - 6
=> 15 chia hết cho n - 6.
=> n - 6 thuộc Ư(15) = {1; 3; 5; 15}
=> n thuộc {7; 9; 11; 21}
2. Giả sử \(\frac{12n+1}{30n+2}\)không phải là phân số tối giản
=> 12n + 1 và 30n + 2 có UCLN là d (d > 1)
d là ước chung của 12n + 1 và 30n + 2
=> d là ước của 30n + 2 - 2(12n + 1) = 6n
=> d là ước chung của 12n + 1 và 6n => d là ước của 12n + 1 - 2.6n = 1
d là ước của 1 mà d > 1 (vô lý) => điều giả sử trên sai => đpcm.
chứng minh 12n + 1/30n + 2
gọi a là ƯC của 12n + 1 và 30n + 2
=> 12n + 1 chia hết cho a
=> 12n chia hết cho a
1 chia hết cho a
=> a = 1
vậy 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
nên 12n + 1/30n + 2 là phân số tối giản (điều phải chứng minh)
Bạn tham khảo link này:
https://olm.vn/hoi-dap/detail/85334930887.html