K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét \(\Delta ABC\)có :

D là trung điểm AB

E là trung điểm AC

=> DE là đường trung bình 

=> DE // BC , DE \(=\frac{BC}{2}\)

3 tháng 12 2017

bài này có ở SBT toán 7 tập 1

22 tháng 7 2018

Bài này khá hay đấy.Mình hướng dẫn bạn nhé.

a, tam giác ADK =tam giác BDE (c.g.c) nên AK =BE (2 cạnh tương ứng)

b, Từ 2 tam giác bắng nhau trên suy ra: góc AKD =góc BED ( 2 góc tương ứng)

Mà 2 góc trên ở vị trí so le trong nên AK song song với BE.

c, Bạn nối B với K

Tương tự như ý a và ý b, ta được: tam giác ADE =tam giác BDK(c.g.c) và AE song song với BK

Tam giác ADE =tam giác BDK (cmt) do đó: AE =BK (2 cạnh tứ)

Mặt khác AE =EC (E là trung điểm của AC)

AE song song với KB (cmt) nên góc KBE =góc CEB (so le trong)

Xét tam giác KBE và tam giác CEB có:

                    BK =CE (=AE)

                    góc KBE =góc CEB (cmt)

                    BE là cạnh chung

Do đó: Tam giác KBE =Tam giác CEB (c.g.c)

Suy ra: góc KBE =góc CEB (2 góc tương ứng)

Vậy DE song song với BC (vì có 2 góc so le trong bằng nhau)

Chúc bạn học tốt.

4 tháng 11 2018

pham van hung a phai xet tam giac truoc chu neu ko thi dua vao dau ma chung minh hai tam giac bang truong hop c.g.c

17 tháng 11 2022

Xét ΔCDB có CN/CD=CP/CB

nên NP//BD và NP=DB/2

Xét ΔEDB có EM/ED=EQ/EB

nên MQ//BD và MQ=BD/2

=>NP//MQ và NP=MQ

Xét ΔDEC có DN/DC=DM/DE

nên MN//EC

=>MN vuông góc với AB

=>MN vuông góc với NP

Xét tứ giác MNPQ có

NP//MQ

NP=MQ

MN vuông góc với NP

Do đó: MNPQ là hình chữ nhật

=>M,N,P,Q cùng thuộc 1 đường tròn

=>MP=NQ

20 tháng 10 2016

Hình học lớp 8

*) Trong tam giác DEC có EM=ME; DQ=QC => MQ là đường trung bình của tam giác DEC=> MQ//AC

Xét tương tự thì NP//AC

=> MQ//NP.

Tương tự thì NM//PQ => tứ giá MNPQ là hình bình hành.

Ta lại có NM//AB;MQ//AC => \(\widehat{NMQ}=\widehat{BAC}=90^o\) (cái này chắc nâng cao lớp 7 học roài)

=> tứ giá MNPQ là hình chữ nhật => NQ=MP.

19 tháng 10 2018

em=me? sao lại thế dc

9 tháng 3 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

*Trong BCD,ta có:

K là trung điểm của BC (gt)

N là trung điểm của CD (gt)

Nên NK là đường trung bình của  ∆ BCD

⇒ NK // BD và NK = 1/2 BD (1)

*Trong  ∆ BED,ta có:

M là trung điểm của BE (gt)

I là trung điểm của DE (gt)

Nên MI là đường trung bình của  ∆ BED

⇒ MI // BD và MI = 1/2 BD (t/chất đường trung bình trong tam giác) (2)

Từ (1) và (2) suy ra: MI // NK và MI = NK

Nên tứ giác MKNI là hình bình hành.

*Trong ∆ BEC ta có MK là đường trung bình.

⇒ MK = 1/2 CE (t/chất đường trung bình của tam giác)

BD = CE (gt). Suy ra: MK = KN

Vậy hình bình hành MKNI là hình thoi.

⇒IK ⊥ MN (t/chất hình thoi).

14 tháng 9 2020

                                                                Bài giải

A B C D E F

a) Xét  \(\Delta AEF\)\(\Delta CED\) có :

AE = CE ( E là trung điểm AC )

\(\widehat{ AEF}\) = \(\widehat{CED}\) ( đối đỉnh)

EF = ED ( gt )

\(\Rightarrow\)\(\Delta AEF =\Delta CED\) ( c.g.c)

\(\Rightarrow\text{ }AF=DC\)  ( 2 cạnh tương ứng ) 

b)

Xét \(\Delta AED\) và \(\Delta CEF\) có:

AE = EC (gt)

AED = CEF ( đối đỉnh)

ED = EF (gt)

Do đó, \(\Delta AED\)  =  \(\Delta CEF\) (c.g.c)

=> AD = CF (2 cạnh tương ứng)

ADE = CFE (2 góc tương ứng)

Mà ADE và CFE là 2 góc so le trong

nên CF // AD hay CF // AB hay CF//DB

Nối đoạn CD

Xét \(\Delta BDC\)\(\Delta FCD\) có:

BD = FC ( cùng = AD)

BDC = FCD (so le trong)

CD là cạnh chung

Do đó, \(\Delta BDC\)  = \(\Delta FCD\)  (c.g.c)

=> BC = FD ( 2 cạnh tương ứng )

\(DE=EF=\frac{1}{2}FD\) 

=>DE=1/2 BC ( đpcm)

Lại có : \(\Delta BDC=\Delta FCD\)( cmt)

=> BCD = FDC (2 góc tương ứng)

Mà BCD và FDC là 2 góc so le trong nên DF // BC hay DE // BC ( E thuộc DF) ( đpcm)