Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABC\)có :
D là trung điểm AB
E là trung điểm AC
=> DE là đường trung bình
=> DE // BC , DE \(=\frac{BC}{2}\)
Bài này khá hay đấy.Mình hướng dẫn bạn nhé.
a, tam giác ADK =tam giác BDE (c.g.c) nên AK =BE (2 cạnh tương ứng)
b, Từ 2 tam giác bắng nhau trên suy ra: góc AKD =góc BED ( 2 góc tương ứng)
Mà 2 góc trên ở vị trí so le trong nên AK song song với BE.
c, Bạn nối B với K
Tương tự như ý a và ý b, ta được: tam giác ADE =tam giác BDK(c.g.c) và AE song song với BK
Tam giác ADE =tam giác BDK (cmt) do đó: AE =BK (2 cạnh tứ)
Mặt khác AE =EC (E là trung điểm của AC)
AE song song với KB (cmt) nên góc KBE =góc CEB (so le trong)
Xét tam giác KBE và tam giác CEB có:
BK =CE (=AE)
góc KBE =góc CEB (cmt)
BE là cạnh chung
Do đó: Tam giác KBE =Tam giác CEB (c.g.c)
Suy ra: góc KBE =góc CEB (2 góc tương ứng)
Vậy DE song song với BC (vì có 2 góc so le trong bằng nhau)
Chúc bạn học tốt.
pham van hung a phai xet tam giac truoc chu neu ko thi dua vao dau ma chung minh hai tam giac bang truong hop c.g.c
Bài giải
a) Xét \(\Delta AEF\) và \(\Delta CED\) có :
AE = CE ( E là trung điểm AC )
\(\widehat{ AEF}\) = \(\widehat{CED}\) ( đối đỉnh)
EF = ED ( gt )
\(\Rightarrow\)\(\Delta AEF =\Delta CED\) ( c.g.c)
\(\Rightarrow\text{ }AF=DC\) ( 2 cạnh tương ứng )
b)
Xét \(\Delta AED\) và \(\Delta CEF\) có:
AE = EC (gt)
AED = CEF ( đối đỉnh)
ED = EF (gt)
Do đó, \(\Delta AED\) = \(\Delta CEF\) (c.g.c)
=> AD = CF (2 cạnh tương ứng)
ADE = CFE (2 góc tương ứng)
Mà ADE và CFE là 2 góc so le trong
nên CF // AD hay CF // AB hay CF//DB
Nối đoạn CD
Xét \(\Delta BDC\) và \(\Delta FCD\) có:
BD = FC ( cùng = AD)
BDC = FCD (so le trong)
CD là cạnh chung
Do đó, \(\Delta BDC\) = \(\Delta FCD\) (c.g.c)
=> BC = FD ( 2 cạnh tương ứng )
Mà \(DE=EF=\frac{1}{2}FD\)
=>DE=1/2 BC ( đpcm)
Lại có : \(\Delta BDC=\Delta FCD\)( cmt)
=> BCD = FDC (2 góc tương ứng)
Mà BCD và FDC là 2 góc so le trong nên DF // BC hay DE // BC ( E thuộc DF) ( đpcm)
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
b: Xét ΔADH và ΔAEH có
AD=AE
góc DAH=góc EAH
AH chung
=>ΔADH=ΔAEH
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Hình nháp thôi em .
Ta có : \(\Delta ABC\) cân tại A
\(\Rightarrow\) góc ABC \(=\) góc ACB
Ta có : D là trung điểm của BC
\(\Rightarrow DB=DC\)
Xét \(\Delta BDE\) và \(\Delta CDF\) lần lượt vuông tại E và F có :
góc ABC \(=\) góc ACB (cmt)
\(DB=DC\left(cmt\right)\)
Do đó : \(\Delta BDE=\Delta CDF\left(ch-gn\right)\)
\(\Rightarrow DE=DF\)
\(\Rightarrow\Delta DEF\) cân tại D