Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của \(ED\) lấy F sao cho \(ED=EF\)
Xét \(\Delta EAD;\Delta ECF\) có :
\(\left\{{}\begin{matrix}EA=EC\\\widehat{E1}=\widehat{E2}\\ED=EF\end{matrix}\right.\)
\(\Leftrightarrow\Delta EAD=\Delta ECF\left(c-g-c\right)\)
\(\Leftrightarrow\widehat{A}=\widehat{ECF}\)
mà 2 góc này so le trong
\(\Leftrightarrow DE\) // \(BC\left(đpcm\right)\)
a: Xét tứ giác BDEM có
DE//BM
BD//EM
Do đó: BDEM là hình bình hành
Suy ra: DE=BM
mà DE=BC/2
nên BM=BC/2
hay M là trung điểm của BC
Xét ΔADE và ΔEMC có
\(\widehat{A}=\widehat{CEM}\)
DE=MC
\(\widehat{ADE}=\widehat{EMC}\)
Do đó: ΔADE=ΔEMC
b: Xét ΔABC có
DE//BC
nên AD/AB=DE/BC
=>AD/AB=1/2
=>AD=1/2AB
hay D là trung điểm của AB
a) Ta có: AD=AE
=> Tam giác ADE cân tại A
\(\Rightarrow\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)
Mà \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Tam giác ABC cân tại A)
=> \(\widehat{ADE}=\widehat{ABC}\)
Mà 2 góc này đồng vị
=> DE//BC
b) Xét tam giác ABI và tam giác ACI
AB=AC
AI chung
BI=IC
=> ΔABI=ΔACI
=> \(\widehat{AIB}=\widehat{AIC}=180^0:2=90^0\Rightarrow AI\perp BC\)
=> AI là đường trung trực của BC
Ta có : AB = AC => tam giác ABC cân tại A
Ta lại có :
B = C ( do ABC cân )
AH chung
BM = MC ( gt )
=> AMB = AMC ( c- g - c )
b) Ta có ABC cân
MÀ M là trung điểm của BC
=> AM là đường cao của ABC
=> AM vuông với BC
a) Xét \(\Delta AMB\)và \(\Delta AMC\)có:
AB = AC (gt)
AM : cạnh chung (gt)
BM = CM (gt)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
b) \(\Delta ABC\): có M là trung điểm BC => AM là đường trụng trực của BC.
Mà \(\Delta ABC\)cân tại A nên đường trụng trực đồng thời cũng là đường cao.
\(\Rightarrow AM\)vuông góc \(BC\)
c) Xét \(\Delta ABE\)và \(\Delta ACD\)có:
AC = AB (gt)>
Góc A : góc chung (gt)
Do AB = AC(gt) : BD = CE (gt)
=> AB - BD = AC - CE
=> AD = AE.
Vậy \(\Delta ABE=\Delta ADC\)(c.g.c)
d) \(\Delta ABC\)cân có:
BD = CE
2 đoạn thằng cách đều BC nên khi kẻ DE thì \(DE\)//\(BC\).
Tự vẽ hình nhé.
Ta có : D là trung điểm của cạnh AB, DE // BC
\(\Rightarrow\)E là trung điểm của cạnh AC ( theo tính chất của đường trung bình trong tam giác)
\(\Rightarrow\)EA = EC (đpcm)
Xét \(\Delta ABC\)có :
D là trung điểm AB
E là trung điểm AC
=> DE là đường trung bình
=> DE // BC , DE \(=\frac{BC}{2}\)