K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

Ta có : \(\frac{1}{4^2}>\frac{1}{4.5}\)

             \(\frac{1}{5^2}>\frac{1}{5.6}\)

              \(\frac{1}{6^2}>\frac{1}{6.7}\)

               ...

              \(\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow T>\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(T>\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(T>\frac{1}{4}-\frac{1}{101}=\frac{97}{404}>0\)  (1)

Ta lại có : \(\frac{1}{4^2}< \frac{1}{3.4}\)

                 \(\frac{1}{5^2}< \frac{1}{4.5}\)

                  \(\frac{1}{6^2}< \frac{1}{5.6}\)

                    ...

                  \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow T< \frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(T< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(T< \frac{1}{3}-\frac{1}{100}=\frac{97}{300}< 1\)  (2)

Từ (1), (2)

\(\Rightarrow T\notinℕ\)

Vậy \(T\notinℕ\).

4 tháng 3 2020

Bổ sung dòng thứ 3 đếm từ dưới lên : \(\Rightarrow0< T< 1\)

19 tháng 7 2016

ta thấy : \(T=\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{98.99}+\frac{1}{99.100}\)  và T > 0 

mà  \(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{98.99}+\frac{1}{99.100}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}\) 

=> \(0< T< \frac{97}{300}\)  

Chứng tỏ tổng T không phải là một số tự nhiên ! ... 

19 tháng 7 2016

thanks 

30 tháng 8 2016

Ta có : \(\frac{1}{4.5}< \frac{1}{4^2}< \frac{1}{3.4}\)

              \(\frac{1}{5.6}< \frac{1}{5^2}< \frac{1}{4.5}\)

               .......

               \(\frac{1}{99.100}< \frac{1}{99^2}< \frac{1}{98.99}\)

              \(\frac{1}{101.100}< \frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}+\frac{1}{101.100}< A< \frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(\frac{1}{4}-\frac{1}{101}< A< \frac{1}{3}-\frac{1}{100}\Rightarrow\frac{97}{404}< A< \frac{97}{300}\)

=> A không phải là số tự nhiên ( đpcm )

5 tháng 9 2019

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{100}\)

Ta có A =1/1.2+1/3.4+1/5.6+...+1/99.100

=(1/1.2+1/3.4)+(1/5.6+...+1/99.100)

=7/12+(1/5.6+...+1/99.100)>7/12(1)

A=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100

=(1+1/3+1/5+...+1/99)-(1/2+1/4+..+1/100)

=(1+1/2+1/3+1/4+..+1/99+1/100)-2(1/2+1/4+....+1/100)    ( Cộng thêm cả 2 vế với 1/2+1/4+..+1/100)

=(1+1/2+1/3+..+1/100)-(1+1/2+..+1/50)

=1/51+1/52+..+1/100

Dãy số trên có 50 số hang 50 chia hết cho 10 nên ta nhóm 10 số vào 1 nhóm

A=(1/51+1/52+..+1/60)+(1/61+1/62+..+1/70)+(1/71+1/72+..+1/80)+(1/81+..+1/90)+(1/91+..+1/100)

<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6

=>A<5/6(2)

từ 1 và 2 => đpcm

AH
Akai Haruma
Giáo viên
31 tháng 3 2023

 

Lời giải:

$A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1000^2}$

$< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}$

$=\frac{1}{4}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{1000-999}{999.1000}$

$=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}$

$=\frac{1}{4}+\frac{1}{2}-\frac{1}{1000}$

$< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}$

Ta có đpcm.

8 tháng 11 2018

Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29

                     2S = 2(1 + 2 + 22 + 23 + ... + 29)

                     2S = 2 + 22 + 23 + ... + 210

                 2S -  S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)

                        S = 210 - 1 = 28.4 - 1

Vậy S < 5 x 28

9 tháng 11 2018

Bn có thể giải cho mik bài2 và bài4 đc ko ngay bây giờ nhé

a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

31 tháng 8 2020

Giúp mik vs ạ.Mik đag cần