Cho △ABC vuông cân tại A. Qua A kẻ đường thẳng xy bất kì Ko cắt đoạn BC, kẻ BM, CN ⊥ xy. Chứng minh
a, △ACN = △BAM
b,CN + BM = MN
Gấp lắm ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ^NAC + ^BAC + ^MAB = 180 (kb)
^BAC = 90
=> ^NAC + ^MAB = 90
^NAC + ^NCA = 90
=> ^NCA = ^MAB
xét tam giác CNA và tam giác AMB có : AB = AC do tam giác ABC vc (gt)
^CNA = ^AMB = 90
=> tam giác CNA = tam giác AMB (ch-gn)
b, tam giác CNA = tam giác AMB (câu a)
=> NA = BM (đn) và CN = AM (đn)
có : NA + MA = MN
=> BM + CN = MN
c, NC = AM (câu b) => NC^2 = AM^2
xét tam giác MB vuông tại M => BM^2 + AM^2 = AB^2 (pytago)
=> BM^2 + NC^2 = AB^2
mà AB không phụ thuộc vào xy
=> BM^2 + CN^2 không phụ thuộc vào xy
Bạn có thể tham khảo tại đây: Chứng minh BM^2+CN^2 không phụ thuộc vào vị trí của xy biết tam giác ABC vuông cân tại A - Phạm Phú Lộc Nữ
Chúc bn học tốt!
ΔMAB vuông tại M
=>\(\widehat{MAB}+\widehat{MBA}=90^0\)
\(\widehat{BAM}+\widehat{BAC}+\widehat{CAN}=180^0\)
=>\(\widehat{BAM}+\widehat{CAN}=180^0-90^0=90^0\)
mà \(\widehat{BAM}+\widehat{MBA}=90^0\)
nên \(\widehat{CAN}=\widehat{MBA}\)
Xét ΔMBA vuông tại M và ΔNAC vuông tại N có
BA=AC
\(\widehat{MBA}=\widehat{NAC}\)
Do đó: ΔMBA=ΔNAC
=>MB=NA
Để A là trung điểm của MN thì AM=AN
mà MB=NA
nên AM=NA=MB
=>MA=MB
=>\(\widehat{MAB}=\widehat{MBA}=45^0\)
=>xy tạo với đường thẳng AB một góc 45 độ thì A là trung điểm của MN
a) Ta có: \(\widehat{BAM}+\widehat{ABM}=90^o\) (t/c tgv) (1)
Lại có: \(\widehat{BAM}+\widehat{BAC}+\widehat{CAN}=180^o\)
\(\Rightarrow\widehat{BAM}+\widehat{CAN}=90^o\) (2)
Từ (1) và (2) suy ra:
\(\widehat{BAM}+\widehat{ABM}=\widehat{BAM}+\widehat{CAN}\)
\(\Rightarrow\widehat{ABM}=\widehat{CAN}\)
Xét \(\Delta ABM\) vuông tại M và \(\Delta CAN\) vuông tại N có:
AB = AC (\(\Delta ABC\) cân)
\(\widehat{ABM}=\widehat{CAN}\) (c/m trên)
\(\Rightarrow\Delta ABM=\Delta CAN\left(ch-gn\right)\)
b) Vì \(\Delta ABM=\Delta CAN\) (câu a)
\(\Rightarrow AM=CN\) và \(BM=AN\) (2 cặp góc t/ư) (3)
Ta có: MN = AM + AN (4)
Thay (3) vào (4) ta đc: CN + BM = MN
c) Áp dụng định lý pytago vào \(\Delta ABM\) vuông tại M có:
\(AB^2=AM^2+BM^2\)
mà \(AM=CN\) (câu b)
\(\Rightarrow AB^2=CN^2+BM^2\rightarrowđpcm\)
Bạn có thể giúp mk giải hộ bài này được ko ạ, mk ko bt làm ntn cho đúng, mong bạn giải giúp mk ạ, mk cảm ơn
Cho △ABC. Dựng ra phía ngoài △ABC, các tam giác ABD và ACE vuông cân tại A, kẻ AH ⊥ BC. Đường thẳng AH cắt DE tại M. Vẽ DI và EK vuông góc với AH. Chứng minh
a, DI = EK = AH
b, M là trung điểm của DE