Chứng minh rằng tổng sau ko chia hết cho 10
A=405^n +2^405 +m^2 ( m,n thuộc N , n # 0 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Sao Cũng Được - Toán lớp 6 - Học toán với OnlineMath
ta có 405^n luôn có c/số tận cùng bằng 5 (vì 405 tận cùng bằng chữ số 5)
-- với 2^405 ta để ý lũy thừa với cơ số là 2 có quy luât c/số tận cùng như sau:
2^1=2 ; 2^2=4 ;2^3=8 ;2^4=16 ; 2^5=32 ......... rút ra quy luật là : chữ số tận cùng lặp lại quy luật 1 nhóm
gồm 4 chữ số (2 ;4 ;6;8)
ta có 405 :4 =100 (nhóm)dư 1 c/số 2 => c/số tận cùng của 2^405 là 2
+ m^2 (với m Є N ),có c/số tận cùng là 1 trong các c số sau: 0 ;1 ;4 ;5 ;6 ;9
=> 405^n + 2^405 + m^2 có c/số tận cùng là c số tận cùng trong các kết quả sau :
(5+2+0=7; 5+2+1=8 ;5+2+4=11 ;5+2+5=12; 5+2+6=13 ;5+2+9 =16)
=>405^n + 2^405 + m^2 không chia hết cho 10 vì số chia hết cho 10 phải có c/số tận cùng =0
vậy biểu thức A = 405^n + 2^405 + m^2 ( m,n Є N, n # 0) không chia hết cho 10
cho nha
A = 405n + 2405 + m2
405 n tận cùng là 5
2405 = (24)101 . 2
= (...6)101 . 2 = (..6).2 = (..2)
m2 tận cùng là 0;1;4;5;6;9
Vậy chữ số tận cùng của A có thể là 7 ; 8 ; 3 ; 2 ; 6
n không có tận cùng là 0
Vậy A không chia hết cho 10
Ta có \(405^n\)có tận cùng là 5 ( vì 405 có tận cùng là 5 )
Khì lũy thừa 2 lên thì ta được tận cùng của \(2^n\) có quy luật là 2-4-8-6-2-... ( là một nhóm gồm 4 chữ số 2,4,8,6 )
Dựa trên quy luật trên ta có : 405 : 4 = 101 dư 1 . Đếm theo quy luật trên thì \(\Rightarrow\)\(^{2^{405}}\)sẽ có tận cùng là 1
Ta có : (...5) + (...2) + \(m^2\)= (...7) + \(m^2\)
\(m^2\)( m \(\in\)\(ℕ\)) thì \(m^2\)sẽ có tận cùng là các chữ số 0,1,4,5,6,9
Vậy với \(405^n+2^{405}+m^2\)sẽ có tận cùng là
TH1 : \(405^n+2^{405}+m^2\)= (...5) + (...2) + (...0) = (...7)
TH2 : \(405^n+2^{405}+m^2\)= (...5) + (...2) +(...1) = (...8)
TH3 : \(405^n+2^{405}+m^2\)= ( ..5) + (..2) + (...4) = (....1)
TH4 :\(405^n+2^{405}+m^2\)= (...5) + (...2) + (...5) = (...2)
TH5 : \(405^n+2^{405}+m^2\)= (...5) + (...2) + (...6) = (...3)
TH6 : \(405^n+2^{405}+m^2\)= (...5) + (...2) + (...9) = ( ...6)
\(\Rightarrow\)\(405^n+2^{405}+m^2\)không chia hết cho 10 ( vì phải có tận cùng = 0 ) \(\Rightarrow\)dpcm
Ta có : 405^n + 2^405 + m^2 = (.......5) + 2^404. 2 + m^2 = (.........5)+ (........6).2 + m^2 = (......5)+(......2)+m^2
= (......7) + m^2
Để A chia hết cho 10 => m^2 phải có c/s tận cùng là 3 mà số chính phương ko có c/s tận cùng là 3
Vậy A ko chia hết cho 10
tick nha bạn !
Ta có:
A=405n + 2405 + m2
A=405n + (25)81 + m2
A=405n + 3281 + m2
Lại có:
+ Với n thuộc N và n khác 0 thì 405n luôn có chữ số tận cùng là 5. (1)
+ 3281 luôn có chữ số tận cùng là 2. (2)
+ Với m thuộc N thì m2 luôn có chữ số tận cùng là 0, 1, 4, 9, 6, 5. (3)
Từ (1), (2) và (3) suy ra 405n + 3281 + m2 có chữ số tận cùng là 7, 8, 1, 6, 3, 2.
Do đó 405n + 2405 + m2 có chữ số tận cùng là 7, 8, 1, 6, 3, 2.
Mà các số chia hết cho 10 khi và chỉ khi có chữ số tận cùng là 0 nên 405n + 2405 + m2 không chia hết cho 10.
Vậy A không chia hết cho 10 (đpcm).
Ta thấy:
\(...5^n\)luôn có chữ số tận cùng là \(5\)
\(2^1=2,2^5=32,2^9=512\Rightarrow2^{4n+1}=...2\)
\(405=4\cdot101+1\)
\(\Rightarrow A=405^n+2^{405}+m^2\\ =...5+...2+m^2\\ =...7+m^2\)
Để \(A⋮10\) thì \(m^2\) tận cùng là \(3\)
Ta có bảng sau:
Tận cùng của a | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Tận cùng của a2 | 0 | 1 | 4 | 9 | 6 | 5 | 6 | 9 | 4 | 1 |
Vậy không có số chính phương nào có tận cùng là chữ số \(3\)
\(\Rightarrow m^2\ne...3\)
\(\Rightarrow...7+m^2⋮̸10\\ \Leftrightarrow A⋮̸10\)
\(A=405^n+2^{405}+m^2\)
Có \(405^n=\overline{...5}\)
\(2^{405}=\left(2^4\right)^{101}.2=16^{101}.2=\overline{...6}.2=\overline{...2}\)
\(m^2\) là 1 số chính phương nên có tận cùng là 0;1;4;5;6;9
\(\Rightarrow\) A có tận cùng là 7;8;1;2;3;6
Vậy \(A⋮10̸\)