Tìm số nguyên n để các phân số sau có giá trị là một số nguyên:
a,10/2n+3 b,n-2/n+5 c,2n+3/n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A nguyên
=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
=>n thuộc {2/3;0;1;-1/3;4/3;-2/3;5/3;-1;7/3;-5/3;13/3;-11/3}
b: B nguyên
=>2n+3 chia hết cho 7
=>2n+3=7k(k\(\in Z\))
=>\(n=\dfrac{7k-3}{2}\left(k\in Z\right)\)
c: C nguyên
=>2n+5 chia hết cho n-3
=>2n-6+11 chia hết cho n-3
=>n-3 thuộc {1;-1;11;-11}
=>n thuộc {4;2;12;-8}
A nguyên thì 3n+4 chia hết cho 2n+1
=>6n+8 chia hết cho 2n+1
=>6n+3+5 chia hết cho 2n+1
=>\(2n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-1;2;-3\right\}\)
a: 12/3n-1 là số nguyên khi 3n-1 thuộc Ư(12)
=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
mà n là số nguyên
nên n thuộc {0;1;-1}
c: 2n+5/n-3 là số nguyên
=>2n-6+11 chia hết cho n-3
=>n-3 thuộc {1;-1;11;-11}
=>n thuộc {4;2;14;-8}
a) ĐKXĐ: \(n\ne3\)
Để phân số \(A=\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(\Leftrightarrow n-3-2⋮n-3\)
mà \(n-3⋮n-3\)
nên \(-2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(-2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
b.\(B=\dfrac{2n+5}{n+3}\)
\(B=\dfrac{n+n+3+3-1}{n+3}=\dfrac{n+3}{n+3}+\dfrac{n+3}{n+3}-\dfrac{1}{n+3}\)
\(B=1+1-\dfrac{1}{n+3}\)
Để B nguyên thì \(\dfrac{1}{n+3}\in Z\) hay \(n+3\in U\left(1\right)=\left\{\pm1\right\}\)
*n+3=1 => n=-2
*n+3=-1 => n= -4
Vậy \(n=\left\{-2;-4\right\}\) thì B có giá trị nguyên
a. ĐK : \(n\ne-4\)
\(A=\frac{n+1}{n+4}=\frac{n+4-3}{n+4}=1-\frac{3}{n+4}\)
\(\Rightarrow n+4\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n + 4 | 1 | -1 | 3 | -3 |
n | -3 | -5 | -1 | -7 |
b, ĐK : \(n\ne-1\)
\(B=\frac{3n-1}{n+1}=\frac{3\left(n+1\right)-4}{n+1}=3-\frac{4}{n+1}\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 0 | -2 | 1 | -3 | 3 | -5 |
c,ĐK : \(n\ne\frac{1}{2}\)
\(C=\frac{6n+5}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
\(\Rightarrow2n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
2n - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 1 | 0 | 3/2(loại) | -1/2(loại) | 5/2(loại) | -3/2(loại) | 9/2(loại) | -7/2(loại) |
Để \(\frac{10}{2n-3}\)là số nguyên thì 10 \(⋮\)2n-3
=> 2n -3 thuộc Ư(10) ={ 1; 2; 5; 10; -1; -2; -5; -10}
Vì 2n-3 là số lẻ nên 2n-3 \(\in\){1; -1; 5; -5}
=> 2n \(\in\){ 4; 2; 8; -2}
=> n \(\in\){ 2; 1; 4; -1}
Vậy...
a)Để \(\frac{10}{2n+3}\)là một số nguyên thì \(10⋮2n+3\)
=>\(2n+3\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
+)Ta có bảng:
Vậy n\(\in\){-2;-1;-4;1}
Chúc bn học tốt