Cho tam giác ABC vuông tại A có BM là tia phân giác của ABC. Từ C kẻ đường thẳng vuông góc đường thẳng BM tại D. Chứng minh: DA^2=DM.DB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)
\(\widehat{BMD}+\widehat{DBM}=90^0\)
mà \(\widehat{ABM}=\widehat{DBM}\)
nên \(\widehat{BMA}=\widehat{BMD}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAME vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AME}=\widehat{DMC}\)
Do đó: ΔAME=ΔDMC
Lời giải:
Xét tam giác $BMA$ và $CMD$ có:
$\wideha{BMA}=\widehat{CMD}$ (đối đỉnh)
$\widehat{BAM}=\widehat{CDM}=90^0$
$\Rightarrow \triangle BMA\sim \triangle CMD$ (g.g)
$\frac{BM}{CM}=\frac{MA}{MD}$
Xét tam giác $BMC$ và $AMD$ có:
$\widehat{BMC}=\widehat{AMD}$ (đối đỉnh)
$\frac{BM}{MC}=\frac{AM}{MD}$ (cmt)
$\Rightarrow \triangle BMC\sim \triangle AMD$ (c.g.c)
$\Rightarrow \widehat{MBC}=\widehat{MAD}$
Mà $\widehat{MBC}=\widehat{ABD}$ (do $BD$ là tia phân giác góc $B$)
$\Rightarrow \widehat{MAD}=\widehat{ABD}$
Xét tam giác $BAD$ và $AMD$ có:
$\widehat{D}$ chung
$\widehat{ABD}=\widehat{MAD}$ (cmt)
$\Rightarrow \triangle BAD\sim \triangle AMD$ (g.g)
$\Rightarrow \frac{AD}{MD}=\frac{BD}{AD}$
$\Rightarrow AD^2=MD.BD$ (đpcm)
\(\widehat{BDC}=\widehat{BAC}=90^0\) => Tứ giác ABCD nội tiếp đường tròn
\(\Rightarrow\widehat{DAM}=\widehat{DBC}=\widehat{ABD}\)
Xét ΔDAM và ΔDBA:
\(\widehat{D}\) : góc chung
\(\widehat{DAM}=\widehat{DBA}\)
=> ΔDAM ∼ ΔDBA
\(\Rightarrow\frac{DA}{DB}=\frac{DM}{DA}\Rightarrow DA^2=DM.DB\)