K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2019

a) bc = 8cm ( dùng pytago )

a, tam giác ABC vuông tại B có:

        \(BA^2+BC^2=AC^2\)(đ/lí py ta-go)

hay 152+ BC2=172

=>    BC2=172-152

=> BC2= 289-225

=> BC2=6

=> BC=\(\sqrt{64}=8\)(cm)

b, Xét \(\Delta BAM\)và \(\Delta CNM\)có:

  MC=MA(gt)

  \(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)

MB=MC(M là trung điểm BC)

\(\Rightarrow\Delta MBA=\Delta MCN\left(c.g.c\right)\)

\(\Rightarrow\widehat{C_1}=\widehat{B}=90^0\)(2 góc t/ư)

=> \(CN\perp CB\)(đpcm)

a: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

b: MN//BC

=>AM/AB=MN/BC

=>MN/7,5=2/3

=>MN=5cm

13 tháng 2 2016

a, Xét tam giác ABC là tam giác vuông tại A

=>AC^2= BC^2 - AB^2

=>AC^2= 100 - 36

AC^2= 64

=>AC= 8

 

1 tháng 9 2021

a, Xét tam giác AHB vuông tại H, đường cao MH 

\(AH^2=AM.AB\)( hệ thức lượng ) (1) 

Xét tam giác AHC vuông tại H, đường cao HN 

\(AH^2=AN.AC\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra : \(AM.AB=AN.AC\)(3) 

b, Xét tam giác AMN và tam giác ACB ta có : 

^A _ chung 

\(\left(3\right)\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)

Vậy tam giác AMN ~ tam giác ACB ( c.g.c )

\(\frac{MN}{BC}=\frac{AM}{AC}\)(4) 

Ta có : BC = HB + HC = 9 + 4 = 13 cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AC^2=HC.BC=9.13=117\Rightarrow AC=3\sqrt{13}\)cm 

Theo định lí Pytago : \(AB=\sqrt{BC^2-AC^2}=\sqrt{169-\left(3\sqrt{13}\right)^2}=2\sqrt{13}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{2\sqrt{13}.3\sqrt{13}}{13}=6\)cm 

lại có : \(AH^2=AM.AB\)cma => \(AM=\frac{36}{2\sqrt{13}}=\frac{18\sqrt{13}}{13}\)cm 

Thay vào (4) ta được : \(\frac{MN}{13}=\frac{\frac{18\sqrt{13}}{13}}{3\sqrt{13}}=6\)cm 

c, Lại có : \(AH^2=AN.AC\)cma => \(AN=\frac{36}{3\sqrt{13}}=\frac{12\sqrt{13}}{13}\)cm 

Ta có : \(S_{AMN}=\frac{1}{2}AN.AM=\frac{1}{2}.\frac{12\sqrt{13}}{13}.\frac{18\sqrt{13}}{13}=\frac{108}{13}\)cm 2

\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.2\sqrt{13}.3\sqrt{13}=39\)cm 2

Do \(S_{AMN}+S_{BMNC}=S_{ABC}\Rightarrow S_{BMNC}=S_{ABC}-S_{AMN}\)

\(=39-\frac{108}{13}=\frac{399}{13}\)cm2

a: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b: Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật

Suy ra: AH=NM

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\)

hay AH=6(cm)

mà AH=NM

nên MN=6cm

4 tháng 2 2018

Ap dụng định lý  Pytago  vào tam giác vuông  \(ABC\)ta có:

             \(AB^2+AC^2=BC^2\)

     \(\Leftrightarrow\)\(BC^2=3^2+4^2=25\)

     \(\Leftrightarrow\)\(BC=\sqrt{25}=5\)