K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2020

\(=\frac{3\sqrt{3}}{0^+}=+\infty\)

NV
25 tháng 2 2020

\(=\lim\limits_{x\rightarrow2^-}\frac{-\left(x+2\right)\sqrt{\left(2-x\right)^2}}{\sqrt{\left(x^2+1\right)\left(2-x\right)}}=\lim\limits_{x\rightarrow2^-}\frac{-\left(x+2\right)\sqrt{2-x}}{\sqrt{x^2+1}}=\frac{0}{\sqrt{5}}=0\)

NV
24 tháng 2 2020

\(x\rightarrow2^-\Rightarrow x< 2\Rightarrow\left|x-2\right|=-\left(x-2\right)\)

\(\Rightarrow\lim\limits_{x\rightarrow2^-}\frac{\left|x-2\right|}{x-2}=\lim\limits_{x\rightarrow2^-}=\frac{-\left(x-2\right)}{x-2}=-1\)

18 tháng 4 2020

kékduhchchdjjdj

NV
5 tháng 3 2023

Giới hạn đã cho hữu hạn nên \(x^2+2ax-b=0\) có nghiệm \(x=2\)

\(\Rightarrow4+4a-b=0\Rightarrow b=4a+4\)

\(\Rightarrow\lim\limits_{x\rightarrow2}\dfrac{x^2+2ax-4a-4}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2a+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x+2a+2}{x+2}=\dfrac{2a+4}{4}=4\)

\(\Rightarrow a=6\Rightarrow b=28\)

5 tháng 3 2023

Hi a,lâu rồi k gặp a :3

23 tháng 12 2023

\(\lim\limits_{x\rightarrow2^-}\left(\dfrac{1}{x-2}-\dfrac{1}{x^2-4}\right)\)

\(=\lim\limits_{x\rightarrow2^-}\dfrac{x+2-1}{\left(x-2\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow2^-}\dfrac{x+1}{\left(x-2\right)\left(x+2\right)}\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow2^-}\dfrac{x+1}{x+2}=\dfrac{2+1}{2+2}=\dfrac{3}{4}>0\\x-2< 0\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Lời giải:

\(\lim\limits_{x\to \pm\infty}\sqrt{x^2-3x+4}=\lim\limits_{x\to \pm\infty}\sqrt{x^2}.\lim\limits_{x\to \pm \infty}\sqrt{1-\frac{3}{x}+\frac{4}{x^2}}=\lim\limits_{x\to \pm\infty}|x|.1=+\infty \)

--------------

\(\lim\limits_{x\to +\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to +\infty}x^2.\lim\limits_{x\to +\infty}(\sqrt{1+\frac{5}{x^2}}+1)=2(+\infty )=+\infty \)

\(\lim\limits_{x\to -\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to -\infty}\frac{5x}{\sqrt{x^2+5}-x}=\lim\limits_{x\to -\infty}\frac{-5}{\sqrt{1+\frac{5}{x^2}}+1}=\frac{-5}{2}\)

----------------

\(\lim\limits_{x\to 2019}\frac{\sqrt{x+285}-48}{\sqrt{x-2018}-\sqrt{2020-x}}=\lim\limits_{x\to -\infty}(\sqrt{x+285}-48).\lim\limits_{x\to -\infty}\frac{1}{\sqrt{x-2018}-\sqrt{2020-x}}\)

\(=\lim\limits_{x\to 2019}\frac{x-2019}{\sqrt{x+285}+48}.\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(x-2019)}=\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(\sqrt{x+285}+48)}=\frac{1}{96}\)

AH
Akai Haruma
Giáo viên
16 tháng 3 2020

Lời giải:

\(\lim\limits_{x\to \pm\infty}\sqrt{x^2-3x+4}=\lim\limits_{x\to \pm\infty}\sqrt{x^2}.\lim\limits_{x\to \pm \infty}\sqrt{1-\frac{3}{x}+\frac{4}{x^2}}=\lim\limits_{x\to \pm\infty}|x|.1=+\infty \)

--------------

\(\lim\limits_{x\to +\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to +\infty}x^2.\lim\limits_{x\to +\infty}(\sqrt{1+\frac{5}{x^2}}+1)=2(+\infty )=+\infty \)

\(\lim\limits_{x\to -\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to -\infty}\frac{5x}{\sqrt{x^2+5}-x}=\lim\limits_{x\to -\infty}\frac{-5}{\sqrt{1+\frac{5}{x^2}}+1}=\frac{-5}{2}\)

----------------

\(\lim\limits_{x\to 2019}\frac{\sqrt{x+285}-48}{\sqrt{x-2018}-\sqrt{2020-x}}=\lim\limits_{x\to -\infty}(\sqrt{x+285}-48).\lim\limits_{x\to -\infty}\frac{1}{\sqrt{x-2018}-\sqrt{2020-x}}\)

\(=\lim\limits_{x\to 2019}\frac{x-2019}{\sqrt{x+285}+48}.\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(x-2019)}=\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(\sqrt{x+285}+48)}=\frac{1}{96}\)

NV
24 tháng 2 2020

Làm biếng viết đủ, bạn cứ tự hiểu là giới hạn khi x tiến tới gì gì đó nhé

a/ \(lim\frac{2x.sinx.cosx}{2sin^2x}=lim\frac{cosx}{\left(\frac{sinx}{x}\right)}=1\)

b/ \(lim\frac{-x}{x\left(\sqrt{1-x}+1\right)}=lim\frac{-1}{\sqrt{1-x}+1}=-\frac{1}{2}\)

c/ \(=lim\frac{1}{x}\left(\frac{x}{x+1}\right)=lim\frac{1}{x+1}=1\)

d/ \(lim\frac{\sqrt{-x}\left(2\sqrt{-x}+1\right)}{\sqrt{-x}\left(5\sqrt{-x}-1\right)}=lim\frac{2\sqrt{-x}+1}{5\sqrt{-x}-1}=\frac{1}{-1}=-1\)

24 tháng 2 2020

giải y như t trừ câu d t ra 2/5~ như mà ko có trong đáp án ~