Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu dưới là 1 giới hạn hoàn toàn bình thường (không phải dạng vô định), bạn cứ thay số vào là được thôi
\(\lim\limits_{x\rightarrow0}\left(1-x\right)tan\frac{\pi x}{2}=\left(1-0\right).tan0=1\)
2 cách:
C1: Xài VCB tương đương khi x ->0
\(\lim\limits_{x\rightarrow0}\left(\dfrac{e^x}{e^x-1}-\dfrac{1}{x}\right)=\lim\limits_{x\rightarrow0}\left(\dfrac{e^x-1+1}{e^x-1}-\dfrac{1}{x}\right)=\lim\limits_{x\rightarrow0}\left(\dfrac{x+1}{x}-\dfrac{1}{x}\right)=\lim\limits_{x\rightarrow0}\dfrac{x}{x}=1\)
C2: Xài L'Hospital
\(=\lim\limits_{x\rightarrow0}\dfrac{e^x.x-e^x+1}{x.e^x-x}=\lim\limits_{x\rightarrow0}\dfrac{e^x.x+e^x-e^x}{e^x.x+e^x-1}=\lim\limits_{x\rightarrow0}\dfrac{e^x.x}{e^x.x+e^x-1}=\lim\limits_{x\rightarrow0}\dfrac{e^x.x+e^x}{e^x.x+2e^x-1}=1\)
Ủa mà lạ nhỉ, lớp 11 đã học số e đâu mà đã cho bài tập về dạng này rồi tar?
Lời giải:
\(\lim\limits_{x\to 1-}\frac{2x+1}{x-1}=-\infty\) do với $x\to 1-$ thì $\lim(2x+1)=3>0$ và $\lim (x-1)=0$ và $x-1<0$
\(\lim\limits_{x\to 6}\frac{(5x-4)\sqrt{2x-3}+x-84}{x-6}=\lim\limits_{x\to 6}\frac{(5x-4)(\sqrt{2x-3}-3)+16(x-6)}{x-6}\)
\(=\lim\limits_{x\to 6}\frac{(5x-4).\frac{2(x-6)}{\sqrt{2x-3}+3}+16(x-6)}{x-6}=\lim\limits_{x\to 6}[\frac{2(5x-4)}{\sqrt{2x-3}+3}+16]=\frac{74}{3}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{x+1}-1+1-\sqrt[]{1-x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x}{\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1}+\dfrac{x}{1+\sqrt[]{1-x}}}{x}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{1}{\sqrt[3]{\left(x+1\right)^3}+\sqrt[3]{x+1}+1}+\dfrac{1}{1+\sqrt[]{1-x}}\right)=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\)
Làm biếng viết đủ, bạn cứ tự hiểu là giới hạn khi x tiến tới gì gì đó nhé
a/ \(lim\frac{2x.sinx.cosx}{2sin^2x}=lim\frac{cosx}{\left(\frac{sinx}{x}\right)}=1\)
b/ \(lim\frac{-x}{x\left(\sqrt{1-x}+1\right)}=lim\frac{-1}{\sqrt{1-x}+1}=-\frac{1}{2}\)
c/ \(=lim\frac{1}{x}\left(\frac{x}{x+1}\right)=lim\frac{1}{x+1}=1\)
d/ \(lim\frac{\sqrt{-x}\left(2\sqrt{-x}+1\right)}{\sqrt{-x}\left(5\sqrt{-x}-1\right)}=lim\frac{2\sqrt{-x}+1}{5\sqrt{-x}-1}=\frac{1}{-1}=-1\)
giải y như t trừ câu d t ra 2/5~ như mà ko có trong đáp án ~