cho a>b>o thoã mãn 2a^2+2b^2-5ab=0.tính a=3a+b/3a-b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(4a^2+b^2=5ab\Leftrightarrow4a^2+b^2-4ab-ab=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\4a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b\left(ktm\right)\\4a=b\left(tm\right)\end{matrix}\right.\)
\(\Rightarrow4a=b\)
\(\Rightarrow\dfrac{5ab}{3a^2+2b^2}=\dfrac{5a.4a}{3a^2+2.\left(4a\right)^2}=\dfrac{20a^2}{3a^2+32a^2}\)
\(=\dfrac{20a^2}{35a^2}=\dfrac{4}{7}\)
\(4a^2+b^2=5ab\)
\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Rightarrow b=4a\left(do.a\ne b\right)\)
\(\dfrac{5ab}{3a^2+2b^2}=\dfrac{20a^2}{3a^2+32a^2}=\dfrac{4}{7}\)
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
Ta có: \(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)
Áp dụng tính chất tỉ dãy số bằng nhau. Ta có:
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\Leftrightarrow\frac{3a-b+3b-c+3c-a}{a+b+c}=\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow\frac{\left(a+b+c\right)\left(3-1\right)}{a+b+c}=\frac{\left(a+b+c\right)2}{a+b+c}=2\).Do:
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}=2\) nên:
\(\Rightarrow3a-b=2c\) (1)
\(\Rightarrow3b-c=2a\) (2)
\(\Rightarrow3c-a=2b\)(3)
Thế (1) ; (2) ; (3) vào A. Ta có:
\(\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)
\(\Leftrightarrow A=\frac{a}{3c-a-3c}+\frac{b}{3a-b-3a}+\frac{c}{3b-c-3b}\)
\(\Leftrightarrow A=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}\). Do: \(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\Rightarrow\frac{a}{-a}=\frac{b}{-b}=\frac{c}{-c}=\left(-1\right)\)
\(\Leftrightarrow A=\left(-1\right)+\left(-1\right)+\left(-1\right)=\left(-3\right)\)
P/s: Mình không chắc nên nếu sai thì bạn thông cảm nha
Mình làm thử các bạn xem có đúng ko nhé
Ta có :
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}=\frac{3a-b+3b-c+3c-a}{a+b+c}=\frac{3a+3b+3c-a-b-c}{a+b+c}\)
\(=\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{a+b+c}=\frac{\left(a+b+c\right)\left(3-1\right)}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=\frac{2}{1}=2\)
Do đó :
\(\frac{3a-b}{c}=2\)\(\Rightarrow\)\(3a-b=2c\)\(\left(1\right)\)
\(\frac{3b-c}{a}=2\)\(\Rightarrow\)\(3b-c=2a\)\(\left(2\right)\)
\(\frac{3c-a}{b}=2\)\(\Rightarrow\)\(3c-a=2b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào A ta có :
\(A=\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)
\(A=\frac{a}{3c-a-3c}+\frac{b}{3a-b-3a}+\frac{c}{3b-c-3b}\)
\(A=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}\)
\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(A=-3\)
Vậy \(A=-3\)
Nếu đúng thì thui, sai thì đừng có k sai cho mình nha :)
vì b > 0
ta chia phương trình cho b^2 :
2(a/b)^2 - 5(a/b) +2 =0
giải phương trình bậc 2 ,ta dc : (a/b) = 2 và (a/b) = (1/2)
xét a = 2b :
thay a=2b vào (1) : 8b^2 +2b-10 = 0
giải b= -(5/4) => a = -(10/4)
b = 1 => a = 2
thay a,b vào (a+b)/(a-b) ==> đáp số là 3
xét b = 2a : (tương tự) ==> đáp số là (1/3)