K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

\(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128=0\)

\(\Leftrightarrow x\left(x+10\right)\left(x+4\right)\left(x+6\right)+128=0\)

\(\Leftrightarrow\left(x^2+10x\right)\left(x^2+10x+24\right)+128=0\)

Đặt \(x^2+10x+12=t\)

\(\Rightarrow\left(t-12\right)\left(t+12\right)+128=0\)

\(\Leftrightarrow t^2-144+128=0\)\(\Leftrightarrow t^2-16=0\)

\(\Leftrightarrow\left(t-4\right)\left(t+4\right)=0\)\(\Leftrightarrow\left(x^2+10x+12-4\right)\left(x^2+10x+12+4\right)=0\)

\(\Leftrightarrow\left(x^2+10x+8\right)\left(x^2+10x+16\right)=0\)

\(\Leftrightarrow\left(x^2+10x+8\right)\left(x+2\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-8\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-8;-2\right\}\)

21 tháng 2 2020

Ta có : \(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128=0\)

\(\Leftrightarrow\left(x^2+10x\right)\left(x^2+10x+24\right)+128=0\) (2)

Đặt \(x^2+10x=t\) Khi đó pt (2) có dạng :

\(t\cdot\left(t+24\right)+128=0\)

\(\Leftrightarrow t^2+24t+128=0\)

\(\Leftrightarrow\left(t+12\right)^2-16=0\)

\(\Leftrightarrow\left(t+12-4\right)\left(t+12+4\right)=0\)

\(\Leftrightarrow\left(t+8\right)\left(t+16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+8=0\\t+16=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}t=-8\\t=-16\end{cases}}\)

+) Với \(t=-8\) thì \(x^2+10x=-8\)

\(\Leftrightarrow\left(x+5\right)^2=17\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=\sqrt{17}\\x+5=-\sqrt{17}\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-5+\sqrt{17}\\x=-5-\sqrt{17}\end{cases}}\) ( thỏa mãn )

+) Với \(t=-16\) thì \(x^2+10x=-16\)

\(\Leftrightarrow\left(x+5\right)^2-9=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+14\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+14=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-14\end{cases}}\) ( thỏa mãn )

Vậy : phương trình đã cho có tập nghiệm \(S=\left\{-5\pm\sqrt{17},4,-14\right\}\)

1 tháng 2 2019

CÁCH KHÁC:

\(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128\)

\(<=>x\left(x+10\right)\left(x+4\right)\left(x+6\right)+128\)

\(<=>\left(x^2+10x\right)\left(x^2+10x+24\right)+128\)

\(<=>\left(x^2+10x\right)^2+24\left(x^2+10x\right)+128\)

\(<=>\left(x^2+10x\right)^2+2.\left(x^2+10x\right).12+12^2-16\)

\(<=>\left(x^2+10x+12\right)^2-4^2\)

\(<=>\left(x^2+10x+12-4\right) \left(x^2+10x +12+4\right)\)

\(<=>\left(x^2+10x+8\right)\left(x^2+10x+16\right)\)

\(<=>\left(x^2+10x+8\right)\left(x^2+2x+8x+16\right)\)

\(<=>\left(x^2+10x+8\right)\left[x\left(x+2\right)+8\left(x+2\right)\right]\)

\(<=>\left(x^2+10x+8\right)\left(x+2\right)\left(x+8\right)\)

\(< =>\left[{}\begin{matrix}x^2+10x+8=0\\x+2=0\\x+8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=-5+\sqrt{17}\\x=-5-\sqrt{17}\\x=-2\\x=-8\end{matrix}\right.\)

Vậy...

1 tháng 2 2019

Ta có :

\(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128=0\)

\(\Leftrightarrow\left[x\left(x+10\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+128=0\)

\(\Leftrightarrow\left(x^2+10x\right)\left(x^2+10x+24\right)+128=0\)

\(\Leftrightarrow\left(x^2+10x\right)^2+24\left(x^2+10x\right)+128=0\)

\(\Leftrightarrow\left(x^2+10x\right)^2+24\left(x^2+10x\right)+144=16\)

\(\Leftrightarrow\left(x^2+10x+12\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+10x+12=4\\x^2+10x+12=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2-13=4\\\left(x+5\right)^2-13=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=17\\\left(x+5\right)^2=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5=\pm\sqrt{17}\\x+5=\pm3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\sqrt{17}-5\\\left[{}\begin{matrix}x=-2\\x=-8\end{matrix}\right.\end{matrix}\right.\)

\(\sqrt{\dfrac{72x}{128}}=\dfrac{3}{4}\)

\(\Leftrightarrow x\cdot\dfrac{9}{16}=\dfrac{9}{16}\)

hay x=1

12 tháng 5 2021

a, Do  \(x=-4\)là một nghiệm của pt trên nên 

Thay \(x=-4\)vào pt trên pt có dạng : 

\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)

Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)

\(\Delta=9-4.\left(-28\right)=9+112=121>0\)

vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)

b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)

13 tháng 5 2021

Vậy m=3, và ngiệm còn lại x2=7

7 tháng 8 2021

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

7 tháng 8 2021

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

18 tháng 3 2022

\(a,2x-5=-x+4\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\\ b,\left(4x-10\right)\left(25+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x-10=0\\25+5x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-5\end{matrix}\right.\\ c,\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\\ \Leftrightarrow\dfrac{2x}{6}-\dfrac{3\left(2x+1\right)}{6}-\dfrac{x}{6}+\dfrac{6x}{6}=0\\ \Leftrightarrow2x-6x-3-x+6x=0\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\)

d, ĐKXĐ:\(x\ne-2,x\ne3\)

\(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\\ \Leftrightarrow\dfrac{\left(x+2\right)\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}+\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(3-x\right)}-\dfrac{5x}{\left(x+2\right)\left(3-x\right)}-\dfrac{2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=0\\ \Leftrightarrow\dfrac{-x^2+x+6}{\left(x+2\right)\left(3-x\right)}+\dfrac{x^2+2x}{\left(x+2\right)\left(3-x\right)}-\dfrac{5x}{\left(x+2\right)\left(3-x\right)}-\dfrac{6-2x}{\left(x+2\right)\left(3-x\right)}=0\)

\(\Leftrightarrow\dfrac{-x^2+x+6+x^2+2x-5x-6+2x}{\left(x+2\right)\left(3-x\right)}=0\\ \Rightarrow0=0\left(luôn.đúng\right)\)

6 tháng 8 2015

a)x5+x-1=0

<=>(x5+x4+x3+x2+x)-(x4+x3+x2+x+1)=0

<=>(x4+x3+x2+x+1)(x-1)=0

Do x4+x3+x2+x+1>0

=>x+1=0

<=>x=1

12 tháng 1 2023

\(a,\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(b,\left(x-2\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

\(c,\left(x+3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

\(d,\left(x+\dfrac{1}{2}\right)\left(4x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\4x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\4\left(x+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

\(e,\left(x-4\right)\left(5x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\5x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

\(f,\left(2x-1\right)\left(3x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-2\end{matrix}\right.\)

12 tháng 1 2023

`a,(x-1)(x+2)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

`b,(x -2)(x -5)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

`c,(x +3)(x -5)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

`d,(x + 1/2)(4x + 4)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\4x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\4x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

`e,(x -4)(5x -10)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\5x-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

`f,(2x -1)(3x +6)=0`

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\3x=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-2\end{matrix}\right.\)

`g,(2,3x -6,9)(0,1x -2)=0`

\(\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2,3x=6,9\\0,1x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=20\end{matrix}\right.\)