(x-3)^4-3(x^2-6x+10)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)(x2-4x+16)(x+4)-x(x+1)(x+2)+3x2=0
\(\Rightarrow\)(x3+64)-x(x2+2x+x+2)+3x2=0
\(\Rightarrow\)x3+64-x3-2x2-x2-2x+3x2=0
\(\Rightarrow\)-2x+64=0
\(\Rightarrow\)-2x=-64
\(\Rightarrow\)x=\(\dfrac{-64}{-2}\)
\(\Rightarrow x=32\)
2)(8x+2)(1-3x)+(6x-1)(4x-10)=-50
\(\Rightarrow\)8x-24x2+2-6x+24x2-60x-4x+10=50
\(\Rightarrow\)-62x+12=50
\(\Rightarrow\)-62x=50-12
\(\Rightarrow\)-62x=38
\(\Rightarrow\)x=\(-\dfrac{38}{62}=-\dfrac{19}{31}\)
a)
\(\dfrac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}\)
\(=\dfrac{x^2\left(x+1\right)-4\left(x+1\right)}{x^3+2x^2+6x^2+12x+5x+10}\)
\(=\dfrac{\left(x+1\right)\left(x^2-4\right)}{x^2\left(x+2\right)+6x\left(x+2\right)+5\left(x+2\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x^2+6x+5\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left[x\left(x+5\right)+\left(x+5\right)\right]}\)
\(=\dfrac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{x-2}{x+5}\)
b)
\(\dfrac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}\)
\(=\dfrac{x^4+3x^3+x^2+3x^3+9x^2+3x-x^2-3x-1}{x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1}\)
\(=\dfrac{x^2\left(x^2+3x+1\right)+3x\left(x^2+3x+1\right)-\left(x^2+3x+1\right)}{x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)}\)
\(=\dfrac{\left(x^2+3x+1\right)\left(x^2+3x-1\right)}{\left(x^2+3x-1\right)\left(x^2+3x-1\right)}\)
\(=\dfrac{x^2+3x+1}{x^2+3x-1}\)
Lời giải:
a) ĐKXĐ: $x\neq \pm 1$
\(\frac{x^4-4x^2+3}{x^4+6x^2-7}=\frac{x^2(x^2-1)-3(x^2-1)}{x^2(x^2-1)+7(x^2-1)}=\frac{(x^2-3)(x^2-1)}{(x^2-1)(x^2+7)}=\frac{x^2-3}{x^2+7}\)
b) ĐKXĐ: Với mọi $x\in\mathbb{R}$
\(\frac{x^4+x^3-x-1}{x^4+x^4+2x^2+x+1}=\frac{(x^4-x)+(x^3-1)}{(x^4+x^3+x^2)+(x^2+x+1)}=\frac{x(x^3-1)+(x^3-1)}{x^2(x^2+x+1)+(x^2+x+1)}\)
\(=\frac{(x^3-1)(x+1)}{(x^2+1)(x^2+x+1)}=\frac{(x-1)(x^2+x+1)(x+1)}{(x^2+1)(x^2+x+1)}=\frac{x^2-1}{x^2+1}\)
c) ĐK: $x\neq 1;-2$
\(\frac{x^3+3x^2-4}{x^3-3x+2}=\frac{x^2(x-1)+4(x^2-1)}{x^2(x-1)+x(x-1)-2(x-1)}=\frac{(x-1)(x^2+4x+4)}{(x-1)(x^2+x-2)}\)
\(=\frac{(x-1)(x+2)^2}{(x-1)(x-1)(x+2)}=\frac{x+2}{x-1}\)
d) ĐK: $x^2+3x-1\neq 0$
\(\frac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}=\frac{(x^2+3x)^2-1}{(x^2+3x)^2-2x^2-6x+1}\)
\(=\frac{(x^2+3x-1)(x^2+3x+1)}{(x^2+3x)^2-2(x^2+3x)+1}=\frac{(x^2+3x-1)(x^2+3x+1)}{(x^2+3x-1)^2}=\frac{x^2+3x+1}{x^2+3x-1}\)
Dễ thế mà không làm được thì bạn nên xem lại nhé,một hai câu thì còn được chứ cả 10 câu thế kia rõ là ỷ lại rồi bạn ạ.Thân!
a, Ta có : \(10+3\left(x-1\right)=10+6x\)
=> \(10+3x-3-10-6x=0\)
=> \(-3x-3=0\)
=> \(x=-1\)
b, Ta có : \(2\left(x-2\right)+3\left(3-x\right)=-4\)
=> \(2x-4+9-3x=-4\)
=> \(-x=-9\)
=> \(x=9\)
c, \(\left(\left|x-2\right|+1\right)\left(x-3\right)=0\)
TH1 : \(x-2\ge0\left(x\ge2\right)\)
=> \(\left|x-2\right|=x-2\)
Nên ta có phương trình : \(\left(x-2+1\right)\left(x-3\right)=0\)
=> \(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=1\left(kTM\right)\\x=3\end{matrix}\right.\)
=> \(x=3\)
TH2 : \(x-2< 0\left(x< 2\right)\)
=> \(\left|x-2\right|=2-x\)
Nên ta có phương trình : \(\left(2-x+1\right)\left(x-3\right)=0\)
=> \(\left[{}\begin{matrix}3-x=0\\x-3=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=3\end{matrix}\right.\) ( ktm )
d, Ta có : \(\left(x+5\right)\left(-3x-15\right)=0\)
=> \(\left[{}\begin{matrix}x+5=0\\-3x-15=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-5\\x=-5\end{matrix}\right.\)
1) 10 + 3 . (x - 1) = 10 + 6x
10 + 3x - 3 = 10 + 6x
3x - 6x = 10 - 10 + 3
-3x = 0 + 3
-3x = 3
x = 3 : (-3)
x = -1
Vậy x = -1
2) 2 . (x - 2) + 3 . (3 - x) = -4
2x - 4 + 9 - 3x = -4
2x - 3x = -4 + 4 - 9
-x = 0 - 9
-x = -9
=> x = 9
Vậy x = 9
3) (Ix - 2I + 1) . (x - 3) = 0
=> (Ix - 2I + 1) = 0 hoặc (x - 3) = 0
Ix - 2I = 0-1 x = 0 + 3
Ix - 2I = -1( loại ) x = 3( thỏa mãn )
Vậy x = 3
4) (x + 5) . (-3x - 15) = 0
=> (x + 5) = 0 hoặc (-3x - 15) = 0
x = 0 - 5 -3x = 0 + 15
x = -5 -3x = 15
x = 15 : (-3)
x = -5
Vậy x = -5
Tick cho mk nha
2: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
3: =x^2(x^2+2x+1)
=x^2(x+1)^2
4: =x^2+6x-x-6
=(x+6)(x-1)
5: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
6: =5x(x+y)-(x+y)
=(x+y)(5x-1)
7: =2x^2+5x-2x-5
=(2x+5)(x-1)
8: =(x^2-1)*(x^2-4)
=(x-1)(x+1)(x-2)(x+2)
9: =x^2(x-5)-9(x-5)
=(x-5)(x-3)(x+3)