c) 2/3x2y.(3xy2-x2+6y)
d) 3xy3(2x-3)(2x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\dfrac{3}{5}a^6x^3+\dfrac{3}{7}a^3x^4-\dfrac{9}{10}ax^5\right):\dfrac{3}{5}ax^3\)
\(=\dfrac{\dfrac{3}{5}a^6x^3+\dfrac{3}{7}a^3x^4-\dfrac{9}{10}ax^5}{\dfrac{3}{5}ax^3}\)
\(=\dfrac{\dfrac{3}{5}ax^3\left(a^5+\dfrac{5}{7}a^2x-\dfrac{3}{2}x^2\right)}{\dfrac{3}{5}ax^3}\)
\(=a^5+\dfrac{5}{7}a^2x-\dfrac{3}{2}x^2\)
b) \(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)\cdot y^2\)
\(=\dfrac{3x^2y\left(3y^2-5x^2y^3\right)}{3x^2y}-2y^2+3x^2y^3\)
\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
c) \(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
\(=\dfrac{6x^2-xy}{x}+\dfrac{2x^3y+3xy^2}{xy}-x\left(2x-1\right)\)
\(=\dfrac{x\left(6x-y\right)}{x}+\dfrac{xy\left(2x^2+3y\right)}{xy}-2x^2+x\)
\(=6x-y+2x^2+3y-2x^2+x\)
\(=7x+2y\)
d) \(\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
\(=\dfrac{x^2-xy}{x}+\dfrac{6x^2y^5-9x^3y^4+15x^4y^2}{\dfrac{3}{2}x^2y^3}\)
\(=\dfrac{x\left(x-y\right)}{x}+\dfrac{\dfrac{3}{2}x^2y^2\left(4y^3-6xy^2+10x^2\right)}{\dfrac{3}{2}x^2y^3}\)
\(=x-y+\dfrac{4y^3-6xy^2+10x^2}{y}\)
c) \(3x+3y-x^2-2xy-y^2=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)d) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)
\(c,=3\left(x+y\right)-\left(x+y\right)^2=\left(3-x-y\right)\left(x+y\right)\\ d,=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
\(a,15x^3y^2-9x^3y^3+6x^3y^3\\ b,12x^3+6x^2y-2x-6x^2y-3xy^2-y\\ =12x^3-2x-3xy^2-y\\ c,4x^2y^3-1\)
\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11
e: Ta có: \(x^2-6x+y^2+4y+2=0\)
\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Dấu '=' xảy ra khi x=3 và y=-2
\(c,=2x^3y^3-\dfrac{2}{3}x^4y+4x^2y^2\\ d,=3xy^3\left(4x^2-9\right)=12x^3y^3-27xy^3\)
c. \(\dfrac{2}{3x^2y}.\left(3xy^2-x^2+6y\right)\)
= \(\dfrac{2.3xy^2}{3x^2y}-\dfrac{2x^2}{3x^2y}+\dfrac{2.6y}{3x^2y}\)
= \(\dfrac{2y}{x}-\dfrac{2}{3y}+\dfrac{4}{x^2}\)
d. 3xy3(2x - 3)(2x + 3)
= (3x2y3 - 9xy3)(2x + 3)
= 6x3y3 - 92y3 - 18x2y3 - 27xy3
= 6x3y3 - 27x2y3 - 27xy3