Cho tam giác ABD vg tại A. B=C. Kẻ AH vg BC(H thuộc BC). CM AH là pg của góc A
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
19 tháng 4 2023
a: Xet ΔAHD vuông tại H và ΔAKD vuông tại K co
AD chung
góc HAD=góc KAD
=>ΔAHD=ΔAKD
b: góc BAD+góc CAD=90 độ
góc BDA+góc DAH=90 độ
góc CAD=góc DAH
=>góc BAD=góc BDA
=>ΔBAD cân tại B
CP
24 tháng 6 2020
a) Xét △ABE và △EBK có
góc ABE = góc EBK ( gt )
BE : cạnh chung
⇒ △ABE = △EBK ( ch - gn )
⇒ BA = BK ( 2 cạnh tương ứng )
⇒ △BAK cân
b) Xét △BKD và △BAD có
BD : cạnh chung
góc ABE = góc EBK ( gt )
BK = BA ( cma )
⇒ △BKD = △BAD ( c.g.c )
⇒ góc BAC = góc BKD ( = \(90^0\) )
⇒ DK ⊥ BC
1 tháng 9 2021
b: Ta có: \(\cot\widehat{B}+\cot\widehat{C}\)
\(=\dfrac{AC}{AB}+\dfrac{AB}{AC}\)
\(=\dfrac{AB^2+AC^2}{AB\cdot AC}\)
\(=\dfrac{BC^2}{AB\cdot AC}\)
\(=\dfrac{BC^2}{BC\cdot AH}=\dfrac{BC}{AH}\)
Xét tam giác AHB và AHC ta có:
góc H chung (đều bằng 90o)
góc B bằng nhau(giả thiết)
AB=AC(Vì đây là tam giác cân)
=>Tam giác AHB = tam giác AHC
=>BH=BC(Hai cạnh tương ứng) nên AH là tia pg của tam giác ABC
HT
Khi nào rảnh vào kênh H-EDITOR xem vid nha bạn!!! Thanks!