K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

so am dc k.o ban

17 tháng 2 2020

a,b thực phải không

Đặt \(a^2+b^2=x\)

Ta có : a + b = 2 \(\Rightarrow a^2+b^2+2ab=4\Rightarrow ab=2-\frac{x}{2}\)

\(\Rightarrow A=x\left(2-\frac{x}{2}\right)=2x-\frac{x^2}{2}=2-\frac{1}{2}\left(x-2\right)^2\le2\)

Vậy GTLN của P là 2 \(\Leftrightarrow\)a =b = 1

NV
16 tháng 4 2022

\(A=\dfrac{1}{4}.4ab\left(a^2+b^2-2ab\right)\le\dfrac{1}{16}\left(4ab+a^2+b^2-2ab\right)=\dfrac{1}{16}\left(a+b\right)^2=\dfrac{1}{16}\)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{2-\sqrt{2}}{4};\dfrac{2+\sqrt{2}}{4}\right);\left(\dfrac{2+\sqrt{2}}{4};\dfrac{2-\sqrt{2}}{4}\right)\)

AH
Akai Haruma
Giáo viên
12 tháng 10

a.

\(P=\frac{6}{x^2-6x+17}\)

Ta thấy: $x^2-6x+17=(x-3)^2+8\geq 8$ với mọi $x\in\mathbb{R}$

$\Rightarrow P=\frac{6}{x^2-6x+17}\leq \frac{6}{8}=\frac{3}{4}$

Vậy $P_{\max}=\frac{3}{4}$. Giá trị này đạt tại $x-3=0\Leftrightarrow x=3$

AH
Akai Haruma
Giáo viên
12 tháng 10

b/

Ta có:

$6=a^2+b^2-ab=\frac{1}{2}(a^2+b^2)+\frac{1}{2}(a^2+b^2-2ab)$

$=\frac{1}{2}(a^2+b^2)+\frac{1}{2}(a-b)^2\geq \frac{1}{2}(a^2+b^2)$ với mọi $a,b$

$\Rightarrow 12\geq a^2+b^2$
Vậy $P_{\max}=12$. Giá trị này đạt tại $a=b=\pm \sqrt{6}$

NV
22 tháng 12 2022

\(S=ab+2\left(a+b\right)\le\dfrac{1}{2}\left(a^2+b^2\right)+2\sqrt{2\left(a^2+b^2\right)}=\dfrac{1}{2}+2\sqrt{2}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{\sqrt{2}}{2}\)

19 tháng 3 2019

\(S=\frac{\left(a+b\right)^2-a^2-b^2}{2}+2\left(a+b\right)\)

\(S=\frac{\left(a+b\right)^2+4\left(a+b\right)-1}{2}\)

\(S=\frac{\left\{\left(a+b\right)-2\right\}^2+5}{2}\)

S>=\(\frac{5}{2}\) xay ra dau = khi va chi khi a+b=2 dua vao day tim a,b

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|Câu 9.a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8Câu 10. Chứng...
Đọc tiếp

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

Câu 11. Tìm các giá trị của x sao cho:

a) |2x – 3| = |1 – x|

b) x2 – 4x ≤ 5

c) 2x(2x – 1) ≤ 2x – 1.

Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)

Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.

1
31 tháng 10 2021

\(5,M=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\\ M=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\\ M=1\left(1-3ab\right)=1-3ab\ge1-\dfrac{3\left(a+b\right)^2}{4}=1-\dfrac{3}{4}=\dfrac{1}{4}\\ M_{min}=\dfrac{1}{4}\Leftrightarrow a=b=\dfrac{1}{2}\)

 

4 tháng 11 2021

Câu 5:

\(a+b=1\Rightarrow a=1-b\)

\(M=a^3+b^3=\left(1-b\right)^3+b^3=1-3b+3b^2-b^3+b^3\)

\(=1-3b+3b^2=3\left(b^2-b+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(b-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

\(minM=\dfrac{1}{4}\Leftrightarrow a=b=\dfrac{1}{2}\)

4 tháng 11 2021

Câu 7:

\(a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Leftrightarrow a^3+b^3+abc-ab\left(a+b+c\right)\ge0\)

\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng do a,b dương)

Dấu "=" xảy ra \(\Leftrightarrow a=b\)