K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2023

`a)`

`@ O(0;0), A(1;1), B(-1;1) in (P)`

`@ C(0;2), D(-2;0) in (d)`

`b)` Ptr hoành độ của `(P)` và `(d)` là:

     `x^2=x+2`

`<=>x^2-x-2=0`

Ptr có: `a-b+c=1+1-2=0`

   `=>x_1=-1;x_2=-c/a=2`

  `=>y_1=1;y_2=4`

`=>(-1;1), (2;4)` là giao điểm của `(P)` và `(d)`

`c)` Vì `(d') //// (d)=>a=1` và `b ne 2`

Thay `a=1;M(2;5)` vào `(d')` có:

         `5=2+b<=>b=3` (t/m)

  `=>` Ptr đường thẳng `(d'): y=x+3`

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:

\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}}  = 5\)

b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)

30 tháng 4 2023

a, (d) cắt trục hoành tại A(xA;0) và trục tung B(0;xB)

Vì A thuộc (d) nên \(0=-2x_A+4\Leftrightarrow x_A=2 \Rightarrow A(2;0)\)

Vì B thuộc (d) nên \(y_B=-2.0+4=4\Rightarrow B(0;4)\)

Vậy A(2;0) và B(0;4) là hai điểm cần tìm.

b, Gọi C(xc;yc) là điểm có hoành độ bằng tung độ

⇒ x= y= a. Vì C thuộc (d) nên \(a=-2a+4\Leftrightarrow a=\dfrac{4}{3}\)

⇒ \(C(\dfrac{4}{3};\dfrac{4}{3})\) là điểm cần tìm.

Tọa độ điểm M là:

\(\left\{{}\begin{matrix}x_M=\dfrac{1+1}{2}=1\\y_M=\dfrac{0+4}{2}=2\end{matrix}\right.\)

Tọa độ điểm N là:

\(\left\{{}\begin{matrix}x_N=\dfrac{1+5}{2}=3\\y_N=\dfrac{4+4}{2}=4\end{matrix}\right.\)

Tọa độ điểm P là:

\(\left\{{}\begin{matrix}x_P=\dfrac{5+7}{2}=6\\y_P=\dfrac{4+0}{2}=2\end{matrix}\right.\)

Tọa độ điểm Q là:

\(\left\{{}\begin{matrix}x_Q=\dfrac{7+1}{2}=4\\y_Q=\dfrac{0+0}{2}=0\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
28 tháng 9

Lơ giải:
Gọi tọa độ điểm $C$ là $(a;b)$.

Vì $ABC$ là tam giác cân tại $B$ nên: 

$AB=BC\Rightarrow AB^2=BC^2$

$\Rightarrow (3-3)^2+(4-0)^2=(a-3)^2+(b-4)^2$

$\Rightarrow (a-3)^2+(b-4)^2=16$ (1)

Lại có: $ABC$ vuông cân tại $B$ nên theo định lý Pitago:

$AB^2+BC^2=AC^2$
$\Rightarrow 2AB^2=AC^2$

$\Rightarrow AC^2= 2.16=32$

$\Rightarrow (a-3)^2+b^2=32$ (2)

Từ $(1); (2)\Rightarrow b^2-(b-4)^2=32-16$

$\Rightarrow 4(2b-4)=16$

$\Rightarrow b=4$

$(a-3)^2=32-b^2=32-4^2=16$

$\Rightarrow a-3=4$ hoặc $a-3=-4$

$\Rightarrow a=7$ hoặc $a=-1$. Mà $a<0$ nên $a=-1$

Vậy tọa độ điểm $C$ là $(-1, 4)$

 

 

30 tháng 10 2023

a) 

loading...  

b) Phương trình hoành độ giao điểm của hai đường thẳng đã cho:

-3x + 5 = 2x

⇔ 2x + 3x = 5

⇔ 5x = 5

⇔ x = 1 ⇒ y = 2.1 = 2

Vậy M(1; 2)