K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

Từ hệ PT trên \(< =>\hept{\begin{cases}x=y+4\left(1\right)\\\frac{0,25}{x}+\frac{0,15}{y}=2\left(2\right)\end{cases}}\)

Thay 1 vào 2 ta có : \(\frac{0,25}{y+4}+\frac{0,15}{y}=2\)

\(< =>\frac{0,75}{3y+12}+\frac{0,75}{5y}=2\)

\(< =>\frac{0,75.\left(5y\right)+0,75.\left(3y+12\right)}{\left(3y+12\right).\left(5y\right)}=2\)

\(< =>\frac{\frac{24y+36}{4}}{15y^2+60y}=2\)

\(< =>\frac{6y+9}{15y^2+60y}=2\)

\(< =>\frac{y+9}{15y^2+10y}=2\)

\(< =>\frac{10}{25y}=2\)

\(< =>25y=20< =>y=\frac{4}{5}\left(3\right)\)

Thay 3 vào 1 ta có : \(x=\frac{4}{5}+4\)

\(< =>x=\frac{24}{5}\left(4\right)\)

Từ 3 và 4 ta có : \(\hept{\begin{cases}x=\frac{24}{5}\\y=\frac{4}{5}\end{cases}}\)

\(\hept{\begin{cases}x-y=4\\\frac{0,25}{x}+\frac{0,15}{y}=2\end{cases}}\)

\(\hept{\begin{cases}x=4+y\\\frac{0,25}{x}+\frac{0,15}{y}=2\end{cases}}\)

Ta thay 4 + y vào biểu thức \(\frac{0,25}{x}+\frac{0,15}{y}\)ta đc

\(\frac{0,25}{4+y}+\frac{0,15}{y}=2\)ĐKXĐ \(y\ne-4;0\)

\(\frac{0,25y}{4y+y^2}+\frac{0,60+y}{4y+y^2}=2\)

\(\frac{0,25y+0,60+y}{4y+y^2}=2\)

\(\frac{0,26y+0,6}{4y+y^2}=2\)

\(\hept{\begin{cases}2y\left(4+y\right)=0\\2y\left(4+y\right)=26y\\2y\left(4+y\right)=6\end{cases}}\)

\(\hept{\begin{cases}8y+2y^2=0\\8y+2y^2=26y\\8y+2y^2=6\end{cases}\Rightarrow\hept{\begin{cases}y=0;-4\\y=0;9\\y=vonghiem\end{cases}}}\)

Theo ĐKXĐ => y = 9

Thay y vào biểu thức \(4+y\)ta đc

\(x=4+9=13\)

Vậy \(\left\{x;y\right\}=\left\{13;9\right\}\)

20 tháng 2 2019

a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)

b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)

c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)

\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)

e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn

8 tháng 7 2017

a) \(\hept{\begin{cases}\left(x-y\right)^2=\left(5-2xy\right)^2\\\left(x+y\right)^2-2xy+xy=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-4xy=25+4x^2y^2-20xy\\\left(x+y\right)^2-xy=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=25+4x^2y^2-16xy\\\left(x+y\right)^2=7+xy\end{cases}}\)

\(\Rightarrow25+4x^2y^2-16xy=7+xy\)

\(\Leftrightarrow4x^2y^2-17xy+18=0\)

\(\Leftrightarrow xy=\frac{9}{4}\)  hoặc  \(xy=2\)

Từ đó tính đc x+y dễ dàng tìm được các giá trị x và y

b) Câu hỏi của Huỳnh Minh Nghĩa - Toán lớp 9 - Học toán với OnlineMath

30 tháng 11 2016

\(a,\hept{\begin{cases}\frac{x}{3}-\frac{y}{4}=2\\\frac{2x}{5}+y=18\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x-\frac{1}{4}\left(18-\frac{2}{5}x\right)=2\\y=18-\frac{2}{5}x\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x-\frac{9}{2}+\frac{1}{10}x=2\\y=18-\frac{2}{5}x\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{13}{30}x=\frac{13}{2}\\y=18-\frac{2}{5}x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=15\\y=18-\frac{2}{5}.15\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=12\end{cases}}}\)

\(b,\hept{\begin{cases}\frac{3}{4}x+\frac{2}{5}y=2,3\\x-\frac{3y}{5}=0,8\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{3}{4}\left(0,8+\frac{3}{5}y\right)+\frac{2}{5}y=2,3\\x=0,8+\frac{3}{5}y\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}0,6+\frac{9}{20}y+\frac{2}{5}y=2,3\\x=0,8+\frac{3}{5}y\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{17}{20}y=1,7\\x=0,8+\frac{3}{5}y\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2\\x=0,8+\frac{3}{5}.2\end{cases}\Leftrightarrow\hept{\begin{cases}y=2\\x=2\end{cases}}}\)

4 tháng 9 2019

\(b,\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4\left(x+y\right)^2\left(x-y\right)-5\left(x-y\right)^2\left(x+y\right)=0\\40\left(x-y\right)+40\left(x+y\right)-9\left(x-y\right)\left(x+y\right)=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x^2-y^2\right)\left[4\left(x+y\right)-5\left(x-y\right)\right]=0\\80x-9\left(x^2-y^2\right)=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x+y\right)\left(x-y\right)\left(9y-x\right)=0\\9\left(\frac{80}{9}x-x^2+y^2\right)=0\end{cases}}\)

\(\Rightarrow.......\)

rồi sao típ ạ?

31 tháng 3 2018

\(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)

ĐK \(x,y\ne0\)

   Từ     \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)

           \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)

+ thay  \(x=y\)vào (2) ta dc ..................

+xy=1 suy ra 1=1/y thay vao 2 ta dc............

23 tháng 1 2020

\(\hept{\begin{cases}x+y+\frac{1}{y}=\frac{9}{x}\left(1\right)\\x+y-\frac{4}{x}=\frac{4y}{x^2}\left(2\right)\end{cases}}\)

\(Đkxđ:\hept{\begin{cases}x\ne0\\y\ne0\end{cases}}\)

Từ \(\left(2\right)\Rightarrow x+y-\frac{4}{x}-\frac{4y}{x^2}=0\)

\(\Leftrightarrow x+y-\frac{4}{x^2}\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(1-\frac{4}{x^2}\right)=0\)

\(\Leftrightarrow1-\frac{4}{x^2}=0\)

\(\Leftrightarrow x\ne\pm2\)

  • Nếu \(x=2\) Thay vào \(\left(1\right)\) ta được:

\(2+y+\frac{1}{y}=\frac{9}{2}\Leftrightarrow2y^2+2=5y\)

\(\Leftrightarrow2y^2-5y+2=0\)

\(\Leftrightarrow\left(2y-1\right)\left(y-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2\left(tm\right)\\y=\frac{1}{2}\left(tm\right)\end{cases}}\)

  • Nếu \(x=-2\) thay vào \(\left(1\right)\) ta được:

\(-2+y+\frac{1}{y}=\frac{9}{-2}\Leftrightarrow2y^2+2=-5y\)

\(\Leftrightarrow2y^2+5y+2=0\)

\(\Leftrightarrow\left(2y+1\right)\left(y+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=-\frac{1}{2}\left(tm\right)\\y=-2\left(tm\right)\end{cases}}\)

Vậy \(n_0\left(x,y\right)\) của hệ là: \(\left(\frac{1}{2};2\right);\left(2;2\right);\left(-\frac{1}{2};-2\right);\left(-2;-2\right)\)