K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

Ta có : \(\frac{1}{1^2}=1\)

           \(\frac{1}{2^2}< \frac{1}{1.2}\)

           \(\frac{1}{3^2}< \frac{1}{2.3}\)

           \(\frac{1}{4^2}< \frac{1}{3.4}\)

            ...

           \(\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A< 2-\frac{1}{50}< 2\)

\(\Rightarrow A< 2\)

Vậy \(A< 2\)

13 tháng 8 2018

(: ko bít. tui giỏi tiếng anh nhưng ngu toán lắm

3 tháng 3 2017

15135454

10 tháng 11 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(=1-\frac{1}{2020}< 1\)

Vậy \(A< 1\left(đpcm\right)\)

10 tháng 11 2019

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}\)

\(\Leftrightarrow B< \frac{3}{4}\left(đpcm\right)\)

Bai 2 : 

                    Ta co :

                            B = [ 2^1 + 2^2 + 2^3 + 2^4 + 2^5 = 2^6 ] + .... + [ 2^25 +  2^26 + 2^27 + 2^28 +2^29 +2^30 ]

                               = 2[1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ] +.....+ 2^25[ 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ]

                             = 2 . 63 +.... + 2^25 . 63

                            = 63 [2 + ..... + 2^25 ] chia het cho 21 

  Vay B chia het cho 21

Bai 1 :

Ta co :

               A = 1/1 + 1/2^2 + 1/3^3 + 1/4^4  + .... + 1?50^2 < 1/1 + 1/1.2 + 1/2.3 + ..... + 1/49.50

                                                                                           =>1 + 1/1 - 1/2 +1/2 -1/3 + .... +1/449 - 1/50

                                                                                           => 1 + 1/1 - 1/50

                                                                                            => 1 + 49/50

                                                                                          => 99/50 < 2

Vay 1 < 2  

1 tháng 10 2016

Tham khảo tại link sau : olm.vn/hoi-dap/question/687403.html

4 tháng 4 2015

Thêm bớt ở A phân số 1/2100

\(A=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2^3}\right)+\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{99}+1}+...+\frac{1}{2^{100}-1}+\frac{1}{2^{100}}\right)+\frac{1}{2^{100}}\)

\(\Rightarrow A\ge1+\frac{1}{2}+\frac{2}{2^2}+\frac{4}{2^3}+\frac{8}{2^4}+...+\frac{2^{99}}{2^{100}}-\frac{1}{2^{100}}=1+\frac{1}{2}+...+\frac{1}{2}-\frac{1}{2^{100}}\)( 100 ps 1/2)\(\Rightarrow A>1+50-\frac{1}{2^{100}}>50\)

=> ĐPCM

 

15 tháng 3 2017

Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)

Vì \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};..;\frac{1}{50.50}< \frac{1}{49.50}\)nên :

\(\Rightarrow\)  \(1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

Ta có : \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=1+\left(1-\frac{1}{50}\right)\)\(=1+\frac{49}{50}\)

Vì \(\frac{49}{50}< 1\)nên \(1+\frac{49}{50}< 2\)\(\Rightarrow\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)

\(\Rightarrow\)\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)