Giúp mk vs ạ
Cho bất phương trình: (m+7)x2_2(m+3)x+2<0.Tìm m để bất phương trình có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk:\(3\le x\le7\)
Có \(\left(\sqrt{x-3}+\sqrt{7-x}\right)^2=4+2\sqrt{\left(x-3\right)\left(7-x\right)}\ge4;\forall3\le x\le7\)
\(\Leftrightarrow\sqrt{x-3}+\sqrt{7-x}\ge2\) (I)
Có \(6x-7-x^2=2-\left(x^2-6x+9\right)=2-\left(x-3\right)^2\le2\) (II)
Từ (I) và (II) => Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{\left(x-3\right)\left(7-x\right)}=0\\x-3=0\end{matrix}\right.\)\(\Rightarrow x=3\) (tm)
Vậy...
ĐKXĐ: \(3\le x\le7\)
Ta có:
\(VT=\sqrt{x-3}+\sqrt{7-x}\ge\sqrt{x-3+7-x}=2\)
\(VP=2-\left(x-3\right)^2\le2\)
\(\Rightarrow VT\ge VP\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)=0\\\left(x-3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Vậy pt có nghiệm duy nhất \(x=3\)
a, Thay m=-1 vào pt ta có:
\(x^2-2\left(m-1\right)x+m^2-3=0\)
\(\Leftrightarrow x^2-2\left(-1-1\right)x+\left(-1\right)^2-3=0\\ \Leftrightarrow x^2+4x-2=0\\ \Leftrightarrow\left(x^2+4x+4\right)-6=0\\ \Leftrightarrow\left(x+2\right)^2-\sqrt{6^2}=0\\ \Leftrightarrow\left(x+2-\sqrt{6}\right)\left(x+2+\sqrt{6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\\x=-2-\sqrt{6}\end{matrix}\right.\)