K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 2 2021

1.

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta=\left(m+1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3m^2+7m+1< 0\end{matrix}\right.\)

\(\Leftrightarrow m< \dfrac{7-\sqrt{61}}{6}\)

2.

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\3m^2+13m+4\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-4\le m\le-\dfrac{1}{3}\end{matrix}\right.\)

Không tồn tại m thỏa mãn

a ơi giúp e với 

https://hoc24.vn/cau-hoi/tim-gtnn-cua-t2m4-2m2-12m-18.333959553188

Bài 3: Tìm m để bất phương trình: x2 - 2x + 1 - m2 ≤ 0 nghiệm đúng với ∀x ∈ [1; 2].                 Bài 4: Tìm m để bất phương trình: (m - 1)x2 + (2 - m)x- 1 > 0 có nghiệm đúng với mọi∀x ∈ (1; 2).                                                                                                                                     Bài 5: Tìm m để bất phương trình: 3(m - 2)x2 + 2(m + 1)x + m - 1 < 0 có nghiệm đúngvới mọi ∀x ∈ (-1; 3).                             ...
Đọc tiếp

Bài 3: Tìm m để bất phương trình: x2 - 2x + 1 - m2 ≤ 0 nghiệm đúng với ∀x ∈ [1; 2].                 Bài 4: Tìm m để bất phương trình: (m - 1)x2 + (2 - m)x- 1 > 0 có nghiệm đúng với mọi∀x ∈ (1; 2).                                                                                                                                     Bài 5: Tìm m để bất phương trình: 3(m - 2)x2 + 2(m + 1)x + m - 1 < 0 có nghiệm đúngvới mọi ∀x ∈ (-1; 3).                                                                                                                          Bài 6: Tìm m để bất phương trình m2 - 2mx + 4 > 0 có nghiệm đúng với mọi ∀x ∈ (-1;0,5)

2

3:

x^2-2x+1-m^2<=0

=>(x-1)^2-m^2<=0

=>(x-1)^2<=m^2

=>-m<=x-1<=m

=>-m+1<=x<=m+1

mà x thuộc [-1;2]

nên -m+1>=-1 và m+1<=2

=>-m>=-2 và m<=1

=>m<=2 và m<=1

=>m<=1

30 tháng 3 2021

Cái này mình mới xét TH a#0, bạn xét thêm TH a=0 nữa nhé

 

16 tháng 2 2018

(2m + 1)x + m - 5 ≥ 0 ⇔ (2m + 1)x ≥ 5 - m (*)

TH1: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , bất phương trình (*) trở thành: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Tập nghiệm của bất phương trình là:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Để bất phương trình đã cho nghiệm đúng với ∀x ∈ (0;1)

thì (0;1) Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Hay Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

TH2: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , bất phương trình (*) trở thành: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Bất phương trình vô nghiệm. ⇒ không có m .

TH3: Với Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , bất phương trình (*) trở thành: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Tập nghiệm của bất phương trình là:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Để bất phương trình đã cho nghiệm đúng với ∀x ∈ (0;1)

thì (0;1) Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Hay Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Kết hợp điều kiện Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , ⇒ không có m thỏa mãn.

Vậy với m ≥ 5, bất phương trình đã cho nghiệm đúng với ∀x ∈ (0;1).

NV
22 tháng 3 2022

a.

Pt có 2 nghiệm pb khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m+3\right)^2-\left(m+1\right)\left(-m+2\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\2m^2+7m+7>0\left(\text{luôn đúng}\right)\end{matrix}\right.\) 

\(\Rightarrow m\ne-1\)

b.

BPT vô nghiệm khi \(\left(m^2-4m-5\right)x^2+2\left(m-5\right)-1< 0\) nghiệm đúng với mọi x

- Với \(m=-1\) ko thỏa mãn

- Với \(m=5\) thỏa mãn

- Với \(m\ne\left\{-1;5\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}m^2-4m-5< 0\\\Delta'=\left(m-5\right)^2+m^2-4m-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\\left(m-5\right)\left(2m-4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\2< m< 5\end{matrix}\right.\) \(\Rightarrow2< m< 5\)

Kết hợp lại ta được: \(2< m\le5\)

2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)

Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)

11 tháng 3 2021

undefined

11 tháng 3 2021

undefined