Tìm các số nguyên x, y sao cho :
-/ x - 320 / - / y + 210 / + 2020 đạt giá trị lớn nhất .
~ Các bn giúp mk nha !!~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
(x-2)(y+1)=7
=> x-2 ; y+1 thuộc Ư(7)={-1,-7,1,7}
Ta có bảng:
x-2 | -1 | -7 | 1 | 7 |
y+1 | -7 | -1 | 7 | 1 |
x | 1 | -5 | 3 | 9 |
y | -8 | -2 | 6 | 0 |
Vậy ta chỉ có 2 cặp x,y thõa mãn điều kiện x>y; là (1,-8) và (9,0)
b)
3x+8 chia hết cho x-1
<=> 3x-3+11 chia hết cho x-1
<=> 3(x-1)+11 chia hết cho x-1
<=> 3(x-1) chia hết x-1; 11 chia hết cho x-1
=> x-1 \(\in\)Ư(11)={-1,-11,1,11}
<=>x\(\in\){0,-10,2,12}
\(\text{Ta có : }2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)
\(\Leftrightarrow\left(x^2+2+\frac{1}{x^2}\right)+\left(x^2-xy+\frac{y^2}{4}\right)=2-xy\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2=2-xy\)
\(\text{ Lại có : }\left(x+\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2\ge0\)
\(\Rightarrow2-xy\ge0\)
\(\Rightarrow xy\le2\)
Mà xy có giá trị lớn nhất
\(\Rightarrow xy\in\left\{\left(1;2\right)\left(2;1\right)\left(-1;-2\right)\left(-2;-1\right)\right\}\)
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}=4\left(1\right)\)
Theo Bất đẳng thức Cauchy cho các cặp số \(\left(x^2;\dfrac{1}{x^2}\right);\left(x^2;\dfrac{y^2}{4}\right)\)
\(\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge2.\dfrac{1}{2}xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge xy\end{matrix}\right.\)
Từ \(\left(1\right)\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}\ge2+xy\)
\(\Leftrightarrow4\ge2+xy\)
\(\Leftrightarrow xy\le2\left(x;y\inℤ\right)\)
\(\Leftrightarrow Max\left(xy\right)=2\)
Dấu "=" xảy ra khi
\(xy\in\left\{-1;1;-2;2\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-2\right);\left(1;2\right);\left(-2;-1\right);\left(2;1\right)\right\}\) thỏa mãn đề bài
hình như dấu "=" xảy ra khi x^2 = 1/x^2 với x^2 = y^2/4 mà bạn nhỉ
= -(|x-320|+|y+210|) + 2020
( |x-320|+|y+210|) >= 0
=> -(|x-320|+|y+210|)<=0
=> -(|x-320|+|y+210|) + 2020<=2020
=> GTLN của ( ghi lại đề) bawngd 2020
dấu "=" xảy ra (=) \(\hept{\begin{cases}x+320=0\\y+210=0\end{cases}}\left(=\right)\hept{\begin{cases}x=-320\\y=-210\end{cases}}\)
vậy GTLN của biểu thức bằng 2020
dấu "=" xảy ra (=) x= -320 , y=-210
#Học-tốt
Nhưng bn ơi, x - 320 chứ ko pải đâu nha !!