Cho tam giác vuông ABC vuông tại A. Gọi K là trung điểm cạnh BC. Qua K kẻ đường thẳng vuông góc với AK cắt các đường thẳng AB, AC ở D và E. Gọi I là trung điểm của DE.
a. Chứng minh rằng: AI vuông góc với BC.
b. So sánh DE và BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Lê Xuân Huy - Toán lớp 7 - Học toán với OnlineMath
a) Xét tam giác vuông ABC có K là trung điểm nên theo tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông, ta có: KB = KA
Hay tam giác KAB cân tại K, suy ra \(\widehat{KBA}=\widehat{KAB}\)
Xét tam giác vuông ADE có I là trung điểm nên theo tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông, ta có: ID = IA
Hay tam giác IDA cân tại I, suy ra \(\widehat{IAB}=\widehat{IDA}\)
Vậy nên ta có: \(\widehat{KBA}+\widehat{IAB}=\widehat{KAB}+\widehat{IDA}=90^o\left(\widehat{DKA}=90^o\right)\)
Gọi giao điểm của BC và AI là J.
Xét tam giác ABJ có \(\widehat{JBA}+\widehat{JAB}=90^o\Rightarrow\widehat{BJA}=90^o\)
Vậy nên \(AI\perp BC.\)
b) Ta thấy ngay \(DE=2AI;BC=2AK\)
Mà theo quan hệ giữa đường vuông góc và đường xiên thì \(AI\ge AK\)
Vậy nên \(DE\ge BC\).
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Lê Xuân Huy - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Bảo Châu Trần - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo lời giải tại đây nhé.
Bài 5:
Cho ABC vuông tại A, kẻ phân giác BM ( M AC), trên cạnh BC
lấy điểm E sao cho BE = AB
a) Chứng minh 2 tam giác BAM BEM .
b) Gọi F là giao điểm của đường thẳng ME và đường thẳng AB.
Chứng minh: FM = MC.
c) Chứng minh: AM < MC
d) Chứng minh AE // FC.