Trong tam giác ABC: AB=1cm: góc A=750; góc B=600. Trên nửa mặt phẳng bờ BC có chứa A: vẽ tia Bx. Góc CBx = 150. Từ A vẽ đường thẳng vuông góc AB cắt Bx tại D.
a) C/m : DC vuông góc BC
b) Tính : BC2+CD2
GIÚP MÌNH VẼ HÌNH VỚI!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
A C B 50 độ
Ta xét tam giác ABC
AB = AC (gt)
=> Tam giác ABC cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Ta có: \(\widehat{BAC}+\widehat{ABC}+\widehat{BCA}=180^o\)
Mà \(\widehat{ABC}=\widehat{ACB}\) (chứng minh trên)
\(\Rightarrow\widehat{BAC}+2\widehat{ABC}=180^o\)
\(\Rightarrow2\widehat{ABC}=180^o-\widehat{BAC}\)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-50^o}{2}=\frac{130^o}{2}=65^o\)
hình dễ nên tự vẽ
a, xét 2 t.giác vuông ABM và HBM có:
BM cạnh chung
\(\widehat{ABM}\)=\(\widehat{HBM}\)(gt)
=> t.giác ABM=t.giác HBM(cạnh huyền- góc nhọn)
=> AB=BH(2 cạnh tương ứng)
b, ta có: \(\widehat{ABM}\)+\(\widehat{BAM}\)+\(\widehat{AMB}\)=180 độ
=>30 độ+90 độ +\(\widehat{AMB}\)=180 độ
=>\(\widehat{AMB}\)=60 độ mà \(\widehat{AMB}\)=\(\widehat{CMD}\)(vì đối đỉnh)
=>\(\widehat{CMD}\)=60 độ
xét t.giác MCD có: \(\widehat{CMD}\)+\(\widehat{MDC}\)+\(\widehat{MCD}\)=180 độ
=>60 độ+ 90 độ+ \(\widehat{MCD}\)=180 độ
=>\(\widehat{MCD}\)=30 độ(1)
Mặt khác \(\Delta\)ABC có:\(\widehat{ABC}\)+\(\widehat{BAC}\)+\(\widehat{ACB}\)=180 độ
=>60 độ+90 độ+\(\widehat{ACB}\)=180 độ
=> \(\widehat{ACB}\)=30 độ(2)
từ (1) và (2) suy ra\(\widehat{BCA}\)=\(\widehat{ACD}\)
c,
Xét ΔBAC vuông tại A có tan ABC=AC/AB
=>1/AB=tan 30
=>\(AB=\sqrt{3}\left(cm\right)\)
=>\(S_{ABC}=\dfrac{\sqrt{3}}{2}\left(cm^2\right)\)