Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét \(\Delta ABE\)và \(\Delta DCE\)ta có:
AE=ED(gt)
BE=EC(E là trug điểm của BC)
\(\widehat{E1}=\widehat{E2}\)(đối đỉnh)
=> \(\Delta ABE\)= \(\Delta DCE\)(c.g.c)
b) từ câu a => \(\widehat{B1}=\widehat{C2}\)(cặp góc tương ứng)
mà hai góc đó ở vị trí so le trong => AB//DC (bn viết sai đề DE)
c) xét \(\Delta ABE\)và \(\Delta ACE\)ta có:
AE là cạnh chung
AB=AC(gt)
BE=EC(E là trug điểm của BC)
=> \(\Delta ABE\)=\(\Delta ACE\)(c.c.c)
=> \(\widehat{E1}=\widehat{E3}\)(cặp góc t/ứng)
mà \(\widehat{E1}+\widehat{E3}=180^o\Rightarrow2\widehat{E1}=180^o\Rightarrow\widehat{E1}=90^o\)
=> AE vuông góc với BC (đpcm)
p/s: tớ làm 1 bài thui nha :)) dài quá
Để tui bài 2!
a) Xét tam giác AKB và tam giác AKC có:
\(AB=AC\) (gt)
\(BK=CK\) (do K là trung điểm BC)
\(AK\) (cạnh chung)
Do đó \(\Delta AKB=\Delta AKC\) (1)
b) \(\Delta AKB=\Delta AKC\Rightarrow\widehat{AKB}=\widehat{AKC}\) (hai góc tương ứng)
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\) (Kề bù)
Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{\widehat{AKB}}{1}=\frac{\widehat{AKC}}{1}=\frac{\widehat{ABK}+\widehat{AKC}}{1+1}=\frac{180^o}{2}=90^o\)
Suy ra AK vuông góc với BC (2)
c)\(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}=45^o\) (Do \(\widehat{KAB} +\widehat{KAB}=90^o\) và \(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}\))
Mà \(\widehat{AKC}=90^o\) (CMT câu b)
Suy ra \(\widehat{KCA}=180^o-\widehat{KAC}-\widehat{AKC}=180^o-45^o-90^o=45^o\)
Mà \(\widehat{KCA}+\widehat{ACE}=90^o\) (gt,khi vẽ đường vuông góc BC cắt AB tại E)
Suy ra \(\widehat{ACE}=90^o-\widehat{KCA}=90^o-45^o=45^o\)
Hay \(\widehat{KCA}=\widehat{ACE}=45^o\).Mà hai góc này ở vị trí so le trong,nên: \(EC//AK\) (3)
Từ (1),(2) và (3) ta có đpcm.
a: AB<AC
=>góc C<góc B
b: Xét ΔBAM vuông tại A và ΔBEM vuông tại E có
BM chung
BA=BE
=>ΔBAM=ΔBEM
c: Xét ΔBNC có
NE,CA là đường cao
NE cắt CA tại M
=>M là trực tâm
=>BM vuông góc CN
a) Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
Do đó: ΔABD=ΔAED(cạnh huyền-góc nhọn)
b) Ta có: AD là tia phân giác của \(\widehat{BAC}\)(gt)
nên \(\widehat{DAC}=\dfrac{\widehat{BAC}}{2}=\dfrac{60^0}{2}=30^0\)(1)
Ta có: ΔABC vuông tại B(gt)
nên \(\widehat{C}+\widehat{A}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{DCA}+60^0=90^0\)
hay \(\widehat{DCA}=30^0\)(2)
Từ (1) và (2) suy ra \(\widehat{DAC}=\widehat{DCA}\)
Xét ΔDCA có \(\widehat{DAC}=\widehat{DCA}\)(cmt)
nên ΔDCA cân tại D(Định lí đảo của tam giác cân)
Suy ra: DA=DC(hai cạnh bên)
Xét ΔAED vuông tại E và ΔCED vuông tại E có
DA=DC(cmt)
DE chung
Do đó: ΔAED=ΔCED(cạnh huyền-cạnh góc vuông)
Suy ra: EA=EC(hai cạnh tương ứng)
a) Sửa đề: Chứng minh ΔADB=ΔADC
Xét ΔADB và ΔADC có
AD chung
DB=DC(D là trung điểm của BC)
AB=AC(ΔABC cân tại A)
Do đó: ΔADB=ΔADC(c-c-c)
Trả lời dùm minh với, mình đang vội lắm
Ai nhanh nhất mình k cho