Cho \(\Delta ABC\) vuông tại A, có \(\widehat{C}=30^0\). Tia phân giác \(\widehat{B}\) cắt BC tại E. Từ E kẻ \(EH\perp BC\left(H\in BC\right).\) Từ H kẻ HK//BE. Chứng minh AE=EK=KC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
Xét hai \(\Delta\) vuông ABE và HBE có:
BE là cạnh huyền chung
\(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)
Vậy \(\Delta ABE=\Delta HBE\left(ch-gn\right)\)
b) ΔABC vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)
Mà \(\widehat{ABC}=60^o\)
\(\Rightarrow\widehat{ACB}=30^o\)
ΔEHC vuông tại H
\(\Rightarrow\widehat{HEC}+\widehat{HCE}=90^o\)
Mà \(\widehat{HCE}=30^o\)
\(\Rightarrow\widehat{HEC}=60^o\left(1\right)\)
Ta lại có : \(\widehat{ABE}=\widehat{EBH}=\frac{\widehat{ABC}}{2}=\frac{60^o}{2}=30^o\)
ΔBEH vuông tại H
\(\widehat{EBH}+\widehat{BEH}=90^o\)
Mà \(\widehat{EBH}=30^o\)
\(\Rightarrow\widehat{BEH}=60^o\)
Vì HK // BE
\(\Rightarrow\widehat{BEH}=\widehat{EHK}\) (2 góc so le trong bằng nhau)
Mà \(\widehat{BEH}=60^o\)
nên \(\widehat{EHK}=60^o\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\)ΔEHK là tam giác đều
c) Xét hai tam giác vuông AEM và HEC có:
AE = HE (ΔABE=ΔHBE)
\(\widehat{AEM}=\widehat{HEC}\) (2 góc đối đỉnh)
Vậy: ΔAEM=ΔHEC(cgv−gn)
\(\Rightarrow\)AM = HC (hai cạnh tương ứng)
Ta có: BM = BA + AM
BC = BH + HC
Mà BA = BH (ΔABE=ΔHBE)
AM = HC (cmt)
⇒ BM = BC
⇒ΔBMC cân tại B
⇒ BN là đường phân giác đồng thời là đường trung tuyến của \(\Delta\) BMC
Nên NM = NC
tự vẽ hình bn nha
a) vì BE là p/g của góc B =>góc B1=góc B2
xét tam giác ABE vg tại A và tam giác HBE vg tại H có :
BE chung
góc B1=góc B2( cmt)
=> tam giác ABE = tam giác HBE ( ch-gn)
nhớ tick cho mk
a) xét ΔΔvuông ABE vàΔΔvuông HBE có:
BE là cạnh chung
gcABE=gcHBE(BE là tia p.g của gc ABC)
=> tg ABE=tgHBE(cạnh huyền góc nhọn)
b) theo câu a: tg ABE= tg HBE (cmt)=>AB=BH (1)
trong tg vuông ABC có: gc B =60o=> gc C=30o
=> AB=1212 BC(2)
=> BH = BC2BC2mà H thuộc BC => H là trung điểm BC
xét tg BCE có:H là TĐ của BC(cmt)
HK//BE(gt)=> K là trung điểm EC
xét tg vuông HEC có: HK là đường trung tuyến ứng vs cạnh huyền
=> HK=EK= EC2EC2=> tg HEK cân ở K
lại có:gc EKH = gc ACB+gc KHC( góc ngoài cuả tgHKC)
gc KHC=gc EBC=30o( đồng vị ,HK//BE)
do đó gc EHK=gc ACB+gc EBC=30+30=60o
tam giác cân có 1 góc = 60 o là tam giác đều
c)(nhiều cách lúm)
trong tg vuông HBM: gc HBM= 60o=>gc HMB= 30o
=>BH=12BMBH=12BMmà BH= 12BC12BC(cmt )
=> BM=BC=> tg BMC cân ở B
BN là đường p.g của gcMBC
=> BN đồng thời là đường trung trực của tgMBC hay của cạnh MC
MK cần bạn vẽ hình để giải được câu b và c nhé
Ta có AB vuông AC; EK vuông AC Nên AB song song với EK
=> goc BAE= goc AEK (1) ( hai góc so le trong)
Lại có góc BAE= góc BEA (2) ( do tam giác ABM= tam giác EBM chứng minh ở câu a)
(1)(2)=> góc AEB = góc AEK
c.
Xét \(\Delta AEH\)và \(\Delta AEK\)
\(H=K\)
Chung \(AE\)
\(\Rightarrow\Delta AEH=\Delta AEK\left(ch-gn\right)\Rightarrow\hept{\begin{cases}AH=AK\\HAE=KAE\end{cases}}\)
Gọi giao điểm giữa HK và AE là N
Xét \(\Delta AHN\)và \(\Delta AKN\)
\(AH=AK\left(cmt\right)\)
\(HAN=KAN\left(cmt\right)\)
Chung \(AN\)
\(\Rightarrow\Delta AHN=\Delta AKN\left(c.g.c\right)\Rightarrow AMH=AMK\Rightarrow2AMH=AMK+AMH=180\Rightarrow AMH=90\)
Vậy \(AE\perp HK\)tại \(N\)
a: Xét ΔABC có \(\widehat{C}< \widehat{ABC}< \widehat{BAC}\)
nên AB<AC<BC
b: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
Do đó: ΔABE=ΔHBE
c: Xét ΔEHA có EA=EH
nên ΔEAH cân tại E
sai đề bài nha!!!Ở chỗ tia phân giác góc B cắt BC tại E