K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

B A C 9cm 7,2cm H 9,6cm

a)Áp dụng định lý Pytago vào \(\Delta\) vuông AHC ta có :

\(AC^2=AH^2+HC^2\)

hay \(AC^2=7,2^2+9,6^2\)

\(\Rightarrow AC^2=51,84+92,16\)

\(\Rightarrow AC^2=144\)

\(\Rightarrow AC=12\)

Vậy AC=12cm

còn câu b mình ko biet xin lỗi bạn nha

Chúc bạn học tốt

a:

ΔAHC vuông tại H

=>\(AC^2=AH^2+HC^2\)

=>\(AC^2=144\)

=>AC=12(cm)

b: \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot AB\cdot AC\)

=>\(AH\cdot BC=AB\cdot AC\)

6 tháng 9 2017

29 tháng 2 2020

a, Xét △HAC vuông tại H có: CH2 + AH2 = AC2 (định lý Pytago)

=> (9,6)2 + (7,2)2 = AC2    => 92,16 + 51,84 = AC2   => AC2 = 144   => AC = 12 (cm)

b, Ta có: \(S_{\text{△}ABC}=\frac{AC.AB}{2}\)

Và \(S_{\text{△}ABC}=\frac{AH.BC}{2}\)

\(\Rightarrow\frac{AC.AB}{2}=\frac{AH.BC}{2}\)( = S△ABC)

=> AC . AB = AH . BC (đpcm)

a: \(AC=\sqrt{7.2^2+9.6^2}=12\left(cm\right)\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

5 tháng 10 2018

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

a.

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm) theo định lý Pitago

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6$ (cm) theo định lý Pitago

$CH=BC-BH=10-3,6=6,4$ (cm)

b.

Áp dụng HTL trong tam giác vuông:

$AH^2=BH.CH$

$\Rightarrow BH=\frac{AH^2}{CH}=\frac{AH^2}{CH}=\frac{9,6^2}{12,8}=7,2$ (cm)

$BC=BH+CH=7,2+12,8=20$ (cm)

$AB=\sqrt{AH^2+BH^2}=\sqrt{9,6^2+7,2^2}=12$ (cm) theo Pitago

$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-12^2}=16$ (cm) theo Pitago

 

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

c.

$AB.AC=AH.BC=12.25=300$

$AB^2+AC^2=BC^2=625$

$(AB+AC)^2-2AB.AC=625$

$AB+AC=\sqrt{625+2AB.AC}=\sqrt{625+2.300}=35$

Áp dụng Viet đảo thì $AB,AC$ là nghiệm của:

$X^2-35X+300=0$

$\Rightarrow (AB,AC)=(20,15)$ (giả sử $AB>AC$)

$BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)

1 tháng 7 2016

Tôi đang cần gấp giúp tôi với

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{H}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

b: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=225\)

hay BC=15cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{12\cdot9}{15}=7.2\left(cm\right)\)

15 tháng 8 2021

giúp e ý c với :((

7 tháng 5 2023

loading...loading...

Do là mình chưa đọc kĩ đề nên là vẽ cạnh BH và CH nó bị sai tỉ lệ, bạn nên vẽ cạnh AC dài ra để hai cạnh đó đúng tỉ lệ nha.