Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên bạn vẽ hình trc
- Xét tam giác AHB vuông góc tại H, theo định lý py-ta-go ta có:
AB2=AH2+HB2 hay AB2=122+52=169↔AB=\(\sqrt{169}\)=13 cm
- xét ΔAHC vuông góc tại H, theo đl py-ta-go ta có:
HC2=AC2 - AH2 hay HC2= 152-122=81↔HC=\(\sqrt{81}\)= 9 cm
vậy AB= 13cm và HC= 9cm
a) ta có
goc BAD+ goc DAC =90 (2 góc kề phụ)
goc ADB+goc HAD=90 ( tam giác AHD vuông tại H)
goc DAC=goc HAD (AD lả p/g goc HAC)
==> góc BAD= goc ADB
-> tam giac BAD cân tại B
b) xet tam giac ADH và tam giac ADE ta có
AD= AD ( cạnh chung)
goc HAD = goc DAC ( AD là p/g goc HAC)
goc AID = góc AIE (=90)
--> tam giac ADH= tam giac ADE (g-c-g)
-< AH= AE ( 2 canh tương ứng)
Xét tam giac AHD và tam giac AED ta có
AD=AD ( cạnh chung)
AH=AE (cmt)
goc DAH= goc DAE ( AD là p/g HAC)
-> tam giac AHD= tam giac AED ( c-g-c)
-> goc AHD= goc AED ( 2 góc tương ứng
mà góc AHD = 90 ( AH vuông góc BC)
nên AED =90
-> DE vuông góc AC
c) Xét tam giac ABH vuông tại H ta có
AB2= AH2+BH2 ( dly pi ta go)
152=122+BH2
BH2 =152-122=81
BH=9
ta có BA=BD ( tam giác ABD cân tại B)
BA=15 cm (gt)
-> BD=15
mà BH+HD=BD ( H thuộc BD)
nên 9+HD=15
HD=15-9=6
Xét tam giác ADH vuông tại H ta có
AD2=AH2+HD2 ( định lý pitago)
AD2=122+62=180
-> AD=\(\sqrt{180}=6\sqrt{5}\)
a) Vì BD = BA nên ΔΔBAD cân tại B
=> BADˆBAD^góc BAD = g BDA (góc đáy) →→-> đpcm
b) Ta có: góc BAD + g DAC = 90o
=> g DAC = 90o - g BAD (1)
Áp dụng tc tam giác vuông ta có:
g HAD + g BDA = 90o
=> g HAD = 90o - g BDA (2)
mà góc BAD = g BDA (câu a)
=> gDAC = g HAD
=> AD là tia pg của g HAC.
c) Áp dụng tc tổng 3 góc trong 1 tg ta có:
g AHD + g HDA + g HAD = 180o
=> 90o + g HDA + g HAD = 180o
=> g HDA + g HAD = 90o (3)
g DAC + g DKA + g ADK = 180o
=> g DAC + 90o + g ADK = 180o
=> g DAC + g ADK = 90o (4)
mà gDAC = g HAD hay gDAK = gHAD
Xét tgHAD và tgKAD có:
g HDA = g ADK (c/m trên)
AD chung
g HAD = g DAK (c/m trên)
=> tgHAD = tgKAD (g.c.g)
=> AH = AK (2 cạnh t/ư)
*Bạn tự vẽ hình nhé!
Áp dụng đ/lí Pi-ta-go trong tam giác ABC vuông tại A có:
BC2 = AB2 + AC2
hay BC2 = 202 + 152
=> BC2 = 625 = 252
=> BC = 25 (cm)
Áp dụng đ/lí Pi-ta-go trong tam giác AHB vuông tại H có:
AB2 = AH2 + HB2
=> BH2 = AB2 - AH2
=> BH2 = 202 - 122
=> BH2 = 256 = 162
=> BH = 16 (cm)
Mà H thuộc BC nên H nằm giữa BC
=> BH + HC = BC
=> 16 + HC = 25
=> HC = 25 - 16
=> HC = 9 (cm)
Vậy BC = 25 cm; BH = 16 cm; CH = 9 cm.
Áp dụng định lý pitago vào tam giác vuông AMB,có:
\(AB^2=AM^2+BM^2\)
\(\Rightarrow AB=\sqrt{12^2+9^2}=\sqrt{225}=15cm\)
Áp dụng định lý pitago vào tam giác vuông AMC, có:
\(AC^2=AM^2+CM^2\)
\(\Rightarrow CM=\sqrt{AC^2-AM^2}=\sqrt{15^2-12^2}=\sqrt{81}=9cm\)
\(C_{ABC}=AB+AC+BC=15+15+\left(9+9\right)=48cm\)
Áp dụng định lí Pytago ta có
\(AB^2=AM^2+MB^2\\ =\sqrt{12^2+9^2}=15\)
Chu vi tam giác ABC là
\(15+15+9+9=48\left(cm\right)\)
Câu a) Nè
Áp dụng định lí Pythagoras vào tam giác ABC
Ta có: \(AB^2+AC^2=BC^2\)
Vì AH hạ từ đỉnh A và vuông góc với BC nên AH là đường cao của tam giác ABC
Áp dụng tính chât đường cao của tam giác vuông
Ta có: \(AH\cdot BC=AB\cdot AC\)
Suy ra: \(AH^2\cdot BC^2=AB^2\cdot AC^2\)
Suy ra \(\frac{BC^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)
Suy ra \(\frac{AC^2+AB^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)
Suy ra: \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)
Vậy Kết luận
~~~ Hết ~~~
Chụy là chanh đừng nhờn với chụy nha em.
Xong mik đã chứng minh xong một câu a) còn câu b dễ lắm tự làm nha, bro. Hết