K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

SIêu nhân henshin! kkk

9 tháng 2 2020

\(102=x^2+y^2+52\)

\(=\left(x^2+16\right)+\left(y^2+36\right)\)

\(\ge8\left|x\right|+12\left|y\right|\ge8x+12y=4A\)

\(\Rightarrow A\le26\) tại x=4;y=6

Không chắc:v Nếu có thêm dấu giá trị tuyệt đối nữa thì ko dùng cosi được thì phải

NV
22 tháng 3 2022

\(\dfrac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}=1\)

Áp dụng BĐT Bunhiacopxki:

\(\left(\dfrac{2}{3}+1+\dfrac{1}{3}\right)\left(\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}\right)\ge\left(\sqrt{\dfrac{2}{3}.\dfrac{3}{2}x^2}+\sqrt{1.\left(y+\dfrac{z}{2}\right)^2}+\sqrt{\dfrac{1}{3}.\dfrac{3z^2}{4}}\right)^2\)

\(\Leftrightarrow2.1\ge\left(x+y+\dfrac{z}{2}+\dfrac{z}{2}\right)^2=\left(x+y+z\right)^2\)

\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

22 tháng 3 2022

\(\frac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Rightarrow\left(x+y+z\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

11 tháng 7 2017

\(BDT\Leftrightarrow\sqrt[3]{\frac{abc}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}+\sqrt[3]{\frac{xyz}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\le1\)

Áp dụng BĐT AM-GM ta có: 

\(\sqrt[3]{\frac{abc}{(a+x)(b+y)(c+z)}}\le\frac{\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}}{3}\)

\(\sqrt[3]{\frac{xyz}{(a+x)(b+y)(c+z)}}\le\frac{\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}}{3}\)

\(\Rightarrow VT\le\frac{\frac{x+a}{x+a}+\frac{b+y}{b+y}+\frac{c+z}{c+z}}{3}=1\)

Xảy ra khi a=b=c và x=y=z

11 tháng 7 2017

Áp dụng BĐT AM-Gm:

\(\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}\ge3\sqrt[3]{\frac{abc}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\)

\(\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}\ge3\sqrt[3]{\frac{xyz}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\)

Cộng 2 BĐT trên theo vế:

\(3\ge3.\frac{\sqrt[3]{abc}+\sqrt[3]{xyz}}{\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\)

\(\Leftrightarrow\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\ge\sqrt[3]{abc}+\sqrt[3]{xyz}\)(đpcm)

Dấu = xảy ra khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Cách này được chứng minh thoải mái nha bạn

Em có một câu hỏi này rất băn khoăn ạ, mong mọi người có thể đọc và chia sẻ kinh nghiệm cho em.Trong sách tham khảo mà em đang đọc có 2 bài tập vận dụng như sau:BTVD 1: Cho các số thực x,y thoả mãn \(x^2+xy+2y^2=1\). Tìm GTNN và GTLN của biểu thức \(P=x-2y+3\).BTVD 2: Cho các số thực thoả mãn ĐK: \(3x+y+2z=1\). Tìm GTNN và GTLN của biểu thức \(P=x^2+y^2+z^2\).Em nghĩ 2 bài này chắc chắn đều có một số phương pháp giải...
Đọc tiếp

Em có một câu hỏi này rất băn khoăn ạ, mong mọi người có thể đọc và chia sẻ kinh nghiệm cho em.

Trong sách tham khảo mà em đang đọc có 2 bài tập vận dụng như sau:

BTVD 1: Cho các số thực x,y thoả mãn \(x^2+xy+2y^2=1\). Tìm GTNN và GTLN của biểu thức \(P=x-2y+3\).

BTVD 2: Cho các số thực thoả mãn ĐK: \(3x+y+2z=1\). Tìm GTNN và GTLN của biểu thức \(P=x^2+y^2+z^2\).

Em nghĩ 2 bài này chắc chắn đều có một số phương pháp giải khác nhau. Nhưng trước đó trong phần bài tập ví dụ, sách có đưa ra một số bài toán khác cùng dạng và có hướng dẫn giải chi tiết theo phương pháp tách ra thành tổng các bình phương để đánh giá nên em nghĩ 2 bài này cũng có thể làm theo cách này.

(Cụ thể em xin lấy ví dụ sau:

BTVD: Cho các số thực m, n, p thoả mãn:

\(2m^2+2n^2+4p^2+3mn+mp+2np=\dfrac{3}{2}\)

Tìm GTNN  và GTLN của \(B=m+n+p\)

HDG: Giả thiết \(\Rightarrow4m^2+4n^2+8p^2+6mn+2mp+4np=3\)

\(\Leftrightarrow3\left(m+n+p\right)^2+\left(m-2p\right)^2+\left(n-p\right)^2=3\)

\(\Rightarrow\left(m+n+p\right)^2\le1\Rightarrow-1\le m+n+p\le1\))

Em thấy cách giải nhìn rất đơn giản nhưng thực sự để nghĩ ra cách nhân, cách tách là điều không dễ. Em không biết để làm dạng này là phải đoán, phải thử cách tách hay có mẹo nào để biết tách không ạ, để nếu như đi thi gặp dạng này có thể làm nhanh. Mong mọi người có thể giúp em.

8
28 tháng 3 2022

bạn không biết làm thì đừng bình luận vào đây

28 tháng 3 2022

hỏi giáo sư nha bạn

3 tháng 4 2022

Var a, s:real;

Begin

Write('Nhap a = ');readln(a);

S:=3.14*a*a/2;

Write('Dien tich hinh tron la ',s:10:2);

Readln;

End.

"mọi người cho em hỏi là cái phần xét tỉ lệ để ra 2 muối dưới đây nó có nghĩa là gì, để làm gì thế"

=> Để tìm số muối tạo ra bn nhé :)

PTHH: NaOH + CO2 --> Na2CO3 + H2O (1)

            NaOH + CO2 --> NaHCO3 (2)

Bn xét tỉ lệ \(T=\dfrac{n_{NaOH}}{n_{CO_2}}\)

Xảy ra 3 TH

+ Nếu T \(\le1\) => Ra NaHCO3 (Xảy ra pư (2) và tính số mol theo NaOH)

+ Nếu T \(\ge2\) => Ra Na2CO3 (Xảy ra pư (1) và tính số mol theo CO2)

+ Nếu 1 < T < 2 => Ra 2 muối Na2CO3, NaHCO3 (Xảy ra đồng thời (1), (2))

* Nếu nó tạo ra 2 muối thì bn có thể lm 2 cách

+ đặt ẩn, giải hệ phương trình (giống bn Kudo)

+ viết phương trình tạo muối trung hòa trước (tính số mol theo NaOH), sau đó CO2 tác dụng với muối trung hòa tạo ra muối axit (tính số mol theo CO2 còn lại)

PTHH: 2NaOH + CO2 --> Na2CO3 + H2O

            Na2CO3 + CO2 + H2O --> 2NaHCO3

Còn nếu bn không thích dùng tỉ lệ thì bn cứ viết phương trình tạo muối trung hòa trước, sau đó CO2 tác dụng với muối trung hòa tạo ra muối axit thôi (đúng với mọi TH :D)

 

23 tháng 4 2017

ta  có 45-5=40

67-9=58

vậy 40va58

23 tháng 4 2017

mình ko biết cách làm nhưng hình như kết quả bằng 40 và 58 thì phải

9 tháng 8 2015
  •  Vì OA<OB nên A nằm giữa hai điểm O và B.

=> OA + AB = OB

              AB = OB - OA = 5 - 2 = 3(cm) (1)

  • Vì OB<OC nên B nằm giữa hai điểm O và C.

=> OB + BC = OC

              BC = OC - OB = 8 - 5 = 3(cm) (2)

  • Vì OA < OC nên A nằm giữa hai điểm O và C

Ta có: A nằm giữa O và C

         B nằm giữa O và C

        A nằm giữa O và B

=> B nằm giữa A và C (đoạn này mình k chắc lắm, nếu muốn đúng hơn thì làm tương tự như 2 chấm đầu dòng chứng minh  lại thêm lần nữa)

Từ (1) và (2) suy ra AB=BC = 3cm

Từ hai điều trên suy ra B là trung điểm AC