K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

A < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

A < 1 - \(\frac{1.}{100}\)

A < \(\frac{99}{100}< \frac{199}{100}\)

=> A < \(\frac{199}{100}\)

b,

S = \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{99}{10^2}\)

S = \(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{9.11}{10.10}\)

S = \(\frac{1.3.2.4.3.5.4.6.5.7...9.11}{2.2.3.3.4.4...10.10}\)

S = \(\frac{1.2.3^2.4^2.5^2...9^2.10.11}{2^2.3^3.4^2...10^2}\)

S = \(\frac{1.11}{2.10}\)

S = \(\frac{11}{20}\)

10 tháng 11 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(=1-\frac{1}{2020}< 1\)

Vậy \(A< 1\left(đpcm\right)\)

10 tháng 11 2019

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}\)

\(\Leftrightarrow B< \frac{3}{4}\left(đpcm\right)\)

5 tháng 2 2016

Ta có:

\(2^2<4^2\Rightarrow\frac{1}{2^2}>\frac{1}{4^2}\)

\(3^2<6^2\Rightarrow\frac{1}{3^2}>\frac{1}{6^2}\)

\(4^2<8^2\Rightarrow\frac{1}{4^2}<\frac{1}{8^2}\)

\(...\)

\(100^2<200^2\Rightarrow\frac{1}{100^2}>\frac{1}{200^2}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{200^2}\)

\(\Rightarrow A>B\)

5 tháng 2 2016

Nhìn là đủ thấy A < B rùi

17 tháng 4 2019

Ta có:B=1/2^2+1/3^2+...+1/100^2<1/1*2+1/2*3+...+1/99*100

B<1-1/100<1

Mà A=1 

Nên B<A 

k cho mình với nha

3 tháng 2 2016

s mk gửi hoài mà k đc nhỉ?????/

 

25 tháng 5 2021

Ta có 

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

..............

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

=> S < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

S < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(S< 1-\dfrac{1}{100}< 1\)(do 1/100 >0)

ĐPcm

Giải:

\(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\) 

\(...\) 

\(\dfrac{1}{99^2}=\dfrac{1}{99.99}< \dfrac{1}{98.99}\) 

\(\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\) 

\(\Rightarrow S< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\) 

\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\) 

\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{100}< 1\) 

\(\Rightarrow S< 1\) 

Vậy S < 1.

5 tháng 2 2020

BÀI 1:

\(P=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{2^{100}-1}\)

\(\Leftrightarrow A=1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{2^{100}-1}+\frac{1}{2^{100}}-\frac{1}{2^{100}}\)

\(\Leftrightarrow A=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+........+\left(\frac{1}{2^{99}+1}+.......+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>1+\frac{1}{2}+\frac{1}{2^2}\cdot2+\frac{1}{2^3}\cdot2^2+........+\frac{1}{2^{100}}\cdot2^{99}-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>1+\frac{1}{2}\cdot100-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>51-\frac{1}{2^{100}}>51-1=50\)

\(\Rightarrow DPCM\)

BÀI 2 :

TA CÓ: \(A=1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{100}}\)VÀ \(B=2\)

= > CẦN CHỨNG MINH \(\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)NHƯ THẾ NÀO SO VỚI 1

ĐẶT \(C=\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)

\(\Leftrightarrow2C=1+\frac{1}{2}+.......+\frac{1}{2^{99}}\)

\(\Leftrightarrow2C-C=\left(1+\frac{1}{2}+.....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+.....+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow C=1-\frac{1}{2^{100}}>1\)

\(\Rightarrow A>B\)

20 tháng 3 2017

2 vế bằng nhau

100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100

100- 1-1/2-1/3-...-1/100 = 1/2+2/3+3/4+...+99/100

100 = 1 + 1/2 + 1/2 + 1/3 + 2/3 + ... + 1/100 + 99/100 (cùng cộng 2 vế với (- 1-1/2-1/3-...-1/100)

100 = 1 + 1 + 1 + ... + 1 (100 số hạng)

100 = 100

Vậy   100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100

21 tháng 3 2017

Cảm ơn bạn!